26 resultados para Hilbert, Espais de
Resumo:
Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.
Resumo:
Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni interagenti in una catena unidimensionale cercando di definire il ruolo degli stati legati durante l'evoluzione temporale del sistema. Lo studio di questo modello viene effettuato a livello analitico tramite la tecnica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana, e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata alle caratteristiche dello spettro al variare dell'interazione tra le due particelle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due particelle e se ne valuta lo spettro energetico in funzione del momento del centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni, in particolare delle soluzioni che danno luogo ad uno stato legato, al variare della lunghezza della catena e del parametro di interazione. La valutazione delle proprietà dinamiche del modello è stata effettuata tramite l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renormalization Group). Questo metodo numerico, che si basa sulla decimazione dello spazio di Hilbert, ci permette di avere accesso a quantità che caratterizzano la dinamica quali la densità e la velocità di espansione. Da queste sono stati estratti i proli dinamici della densità e della velocità di espansione al variare del valore del parametro di interazione.
Resumo:
Si fornisce un'introduzione al formalismo geometrico della meccanica classica e quantistica, studiando dapprima lo spazio delle fasi come varietà simplettica ricavando le equazioni di Hamilton. Si descrivono in seguito gli strumenti necessari per operare in uno spazio di Hilbert, i quali risultano più complessi di quelli utilizzati per descrivere lo spazio delle fasi classico. In particolare notiamo l'esigenza di definire anche una struttura riemanniana sugli spazi complessi per poter ivi definire il prodotto scalare, le parentesi e i commutatori simmetrici.
Resumo:
Studio degli insiemi algebrici e delle varietà affini: proprietà, frecce e risultati, tra cui il teorema degli zeri di Hilbert.
Resumo:
In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.
Resumo:
L'analisi di fase del segnale si presenta appropriata e di notevole efficacia per l'individuazione di attivazioni in fibrillazione atriale, in quanto permette la valutazione di come queste si generano e si propagano. Dopo aver ottenuto i dati relativi alle attivazioni, è possibile ricostruire delle mappe di fase atriale che possono essere utilizzate dal clinico per individuare i punti in cui cauterizzare. In questo lavoro di tesi sono stati utilizzati i segnali endocavitari atriali acquisiti con un catetere a contatto di nuova generazione per ottenere gli istanti di attivazione nelle diverse zone della camera atriale. I risultati dell'algoritmo messo a punto e testato su segnali in ritmo sinusale, sono stati confrontati con le performance di due metodi riportati in letteratura, evidenziando prestazioni migliori che potrebbero portare alla costruzione accurata delle mappe di fase e quindi ad una precisa localizzazione delle aree da cauterizzare durante la procedura di ablazione.
Resumo:
Lo scopo di questa tesi è di studiare i principali risultati riguardanti le estensioni trascendenti di campi, l'indipendenza algebrica di elementi trascendenti su un campo, le basi di trascendenza di un'estensione. A partire da questi risultati vengono dimostrati due importanti teoremi di geometria algebrica: il Teorema degli zeri di Hilbert e il Teorema di Lüroth.
Resumo:
La simulazione di un sistema quantistico complesso rappresenta ancora oggi una sfida estremamente impegnativa a causa degli elevati costi computazionali. La dimensione dello spazio di Hilbert cresce solitamente in modo esponenziale all'aumentare della taglia, rendendo di fatto impossibile una implementazione esatta anche sui più potenti calcolatori. Nel tentativo di superare queste difficoltà, sono stati sviluppati metodi stocastici classici, i quali tuttavia non garantiscono precisione per sistemi fermionici fortemente interagenti o teorie di campo in regimi di densità finita. Di qui, la necessità di un nuovo metodo di simulazione, ovvero la simulazione quantistica. L'idea di base è molto semplice: utilizzare un sistema completamente controllabile, chiamato simulatore quantistico, per analizzarne un altro meno accessibile. Seguendo tale idea, in questo lavoro di tesi si è utilizzata una teoria di gauge discreta con simmetria Zn per una simulazione dell'elettrodinamica quantistica in (1+1)D, studiando alcuni fenomeni di attivo interesse di ricerca, come il diagramma di fase o la dinamica di string-breaking, che generalmente non sono accessibili mediante simulazioni classiche. Si propone un diagramma di fase del modello caratterizzato dalla presenza di una fase confinata, in cui emergono eccitazioni mesoniche ed antimesoniche, cioè stati legati particella-antiparticella, ed una fase deconfinata.
Resumo:
Lo scopo di questa tesi consiste nello studio delle proprietà generali di sistemi compatti statici e a simmetria sferica nell'ambito dei modelli che prevedono l'esistenza di dimensioni spaziali aggiuntive e che sono comunemente dette del mondo-brana. Si comincerà con una breve descrizione di teorie gravitazionali a più dimensioni, in particolare si parte dalla teoria di Kaluza-Klein, per arrivare ai modelli ADD(Arkani-Hamed, Dimopoulos, Dvali) e infine a quelli RS(Rundall, Sundrum)che interessano direttamente questo studio. Per questi modelli, vengono quindi ricavate le equazioni di campo multidimensionali dall'azione di Einstein-Hilbert e successivamente le si proietta, facendo uso delle equazioni di Gauss e Codazzi, su una brana massiva immersa in un “bulk” cinquedimensionale. Infine si studiano le equazioni di campo di Einstein quadridimensionali per una generica metrica che può servire a descrive stelle statiche, a simmetria sferica e costituite da un fluido perfetto isotropo. Successivamente si ripete la stessa analisi partendo dall'equazione di campo sulla brana e si confrontano i risultati nei due diversi contesti.
Resumo:
Si consideri un insieme X non vuoto su cui si costruisce una sigma-algebra F, una trasformazione T dall'insieme X in se stesso F-misurabile si dice che conserva la misura se, preso un elemento della sigma-algebra, la misura della controimmagine di tale elemento è uguale a quella dell'elemento stesso. Con questa nozione si possono costruire vari esempi di applicazioni che conservano la misura, nell'elaborato si presenta la trasformazione di Gauss. Questo tipo di trasformazioni vengono utilizzate nella teoria ergodica dove ha senso considerare il sistema dinamico a tempi discreti T^j x; dove x = T^0 x è un dato iniziale, e studiare come la dinamica dipende dalla condizione iniziale x. Il Teorema Ergodico di Von Neumann afferma che dato uno spazio di Hilbert H su cui si definisce un'isometria U è possibile considerare, per ogni elemento f dello spazio di Hilbert, la media temporale di f che converge ad un elemento dell'autospazio relativo all'autovalore 1 dell'isometria. Il Teorema di Birkhoff invece asserisce che preso uno spazio X sigma-finito ed una trasformazione T non necessariamente invertibile è possibile considerare la media temporale di una funzione f sommabile, questa converge sempre ad una funzione f* misurabile e se la misura di X è finita f* è distribuita come f. In particolare, se la trasformazione T è ergodica si avrà che la media temporale e spaziale coincideranno.
Resumo:
La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.