445 resultados para ellissoide inerzia equazioni Eulero moto Poinsot fenomeni giroscopici
Resumo:
L’analisi della risposta delle pavimentazioni flessibili alle sollecitazioni veicolari ed alle variazioni di temperatura non può prescindere dallo studio del legante bituminoso: è all’interno del film di bitume, infatti, che avviene la rottura per fatica alle basse temperature (alte frequenze di carico) e che si sviluppano le deformazioni con conseguente fenomeno dell’ormaiamento alle alte temperature di esercizio (basse frequenze di carico). Il deterioramento di queste pavimentazioni, dovuto a fenomeni di fessurazione da fatica o di ormaiamento, infatti, è divenuto nel settore infrastrutturale oggetto di studio ed approfondimento. Spesso tali ammaloramenti sono accelerati dall’azione dell’acqua che, in assenza di strati impermeabili, raggiunge gli strati inferiori della sovrastruttura indebolendo le proprietà coesive del legante e di adesione tra bitume ed aggregati. Se a queste problematiche si aggiunge l’impatto ambientale di un’infrastruttura viaria (emissione di fumi durante la stesa del conglomerato), risulta evidente l’interesse nel campo della ricerca circa lo studio di leganti bituminosi modificati e additivati, in grado di aumentare le prestazioni del pacchetto stradale, oltre che a ridurne gli effetti negativi sull’ambiente. Per queste motivazioni, la presente Tesi si concentra sullo studio dei leganti e dei mastici bituminosi ottenuti con l’aggiunta di “Powdered Rubber Modifier (PRM)” ovvero di “Polverino di Gomma” ottenuto mediante il riciclaggio di pneumatici usati, attraverso opportune lavorazioni di natura meccanica. In campo stradale sta assumendo sempre più importanza l’utilizzo di pneumatici riciclati, in grado di aumentare le prestazioni del pacchetto stradale e di ridurne gli effetti negativi sull’ambiente. Per studiare e testare questi leganti e mastici bituminosi si è scelto di utilizzare un approccio tradizionale, consistente nella simulazione della risposta meccanica macroscopica mediante modelli costitutivi basati sulla teoria del mezzo continuo: ciò significa che la miscela viene sottoposta a prove di tipo statico e dinamico in un ampio intervallo di condizioni inerenti all’intensità della forza, alla velocità di applicazione del carico ed alla temperatura. In particolare, i materiali sopra citati sono stati testati mediante Dynamic Shear Rheometer (DSR-UNI EN 14770); tale apparecchiatura è in grado, attraverso l’applicazione di una sollecitazione dinamica con andamento sinusoidale, di simulare le reali condizioni di carico cui è sottoposta una pavimentazione stradale durante la sua vita utile. I risultati reologici ottenuti sono stati confrontati per valutare il contributo prestazionale di ciascun materiale componente le miscele.
Resumo:
L'elaborato si pone l'obiettivo di sviluppare un controllo sensorless di posizione per un attuatore tubolare pentafase anisotropo a magneti permanenti. Le peculiarità degli attuatori tubolari sono molteplici: assenza di organi di trasmissione del moto; compattezza; elevate densità di forza e prestazioni nella dinamica, con una più ampia banda passante per il sistema di controllo; maggiore precisione, risoluzione, ripetibilità ed affidabilità. Tale tipologia di macchina è pertanto molto interessante in diverse applicazioni quali robotica, automazione, packaging, sistemi di posizionamento ecc., ed è altresì promettente nei settori aerospaziale e automotive. L'azionamento in studio è inoltre di tipo multifase. In tal caso si ottengono diversi vantaggi: possibilità di suddividere la potenza su un numero elevato di rami del convertitore; capacità di lavorare in condizioni di guasto; incremento della densità di coppia della macchina; possibilità di controllare in modo indipendente e con un solo inverter più macchine collegate in serie. Prestazioni migliori della macchina si possono ottenere con un opportuno sistema di controllo. Nel caso di azionamenti a magneti permanenti risulta particolarmente attraente il controllo di tipo sensorless della posizione rotorica, in alternativa ad un encoder o un resolver. Questo aumenta l'affidabilità, riduce i costi e diminuisce l'ingombro complessivo dell'azionamento. Appare molto interessante l'utilizzo di un azionamento tubolare di tipo multifase, e ancor più lo sviluppo di un apposito controllo di posizione di tipo sensorless. L’algoritmo sensorless di stima della posizione dell’attuatore può essere sviluppato partendo dall’anisotropia di macchina, sfruttando la possibilità peculiare delle macchine multifase di estrarre informazioni sullo stato attraverso i molteplici gradi di libertà presenti. Nel caso in questione si tratta del controllo della terza armonica spaziale del campo magnetico al traferro. Fondamentale è la definizione di un modello matematico in grado di rappresentare in modo opportuno l’anisotropia di macchina. In letteratura non sono ancora presenti modelli adatti a descrivere il dispositivo in questione; pertanto una parte essenziale della tesi è stata dedicata a definire tale modello e a verificarne la validità. Partendo dal modello è possibile dunque sviluppare un appropriato algoritmo di controllo sensorless e rappresentare in simulink l'intero azionamento. Nella parte conclusiva del lavoro di tesi vengono presentate le prove sperimentali, finalizzate alla determinazione dei parametri di macchina e alla verifica del funzionamento del sistema di controllo. Infine sono confrontati i risultati ottenuti rispetto a quelli realizzati con controlli di tipo tradizionale.
Resumo:
In questo lavoro di tesi è stato svolto uno studio analitico sul modello di Hubbard esteso unidimensionale al fine di osservare la presenza di eventuali risonanze che possano dare origine alla formazione di stati legati di due particelle. L'esistenza di uno stato legato stabile ha suscitato grande interesse negli ultimi anni, sia in ambito teorico che sperimentale, poichè è alla base di molti fenomeni che vengono osservati nei sistemi a molti corpi a basse temperature, come il BCS-BEC crossover. Pertanto si è ritenuto utile studiare il problema a due corpi nel modello di Hubbard esteso, che in generale non è integrabile. Il modello considerato contiene interazioni a primi e secondi vicini, in aggiunta all'interazione di contatto presente nel modello di Hubbard. Il problema è stato indagato analiticamente attraverso il Bethe ansatz, che consente di trovare tutti gli autovalori e le autofunzioni dell'Hamiltoniana. L'ansatz di Bethe sulla funzione d'onda è stato generalizzato per poter tener conto dei termini di interazione a più lungo raggio rispetto all'interazione di contatto. Si trova che, in questo modello, nel limite termodinamico, possono avvenire delle risonanze (o quasi-risonanze) in cui la lunghezza di scattering diverge, contrariamente a quanto avviene nel modello di Hubbard. Tale fenomeno si verifica quando il livello energetico discreto degli stati legati “tocca” la banda di scattering. Inoltre, con l'aggiunta di nuovi termini di interazione emergono nuovi stati legati. Nel caso in esame, si osservano due famiglie di stati legati, se lo spin totale delle due particelle è 1, e tre famiglie di stati legati, se lo spin totale è 0.
Resumo:
I tumori, detti anche ''la malattia del secolo'', portano ogni anno alla morte di oltre 7 milioni di persone al mondo. Attualmente è una malattia molto diffusa che colpisce soprattutto persone anziane e non solo; tuttavia ancora non esiste una cura ''esatta'' che riesca a guarire la totalità delle persone: anzi si è ben lontani da questo risultato. La difficoltà nel curare queste malattie sta nel fatto che, oltre ad esservi una grande varietà di tipologie (è quindi difficile trovare una cura unica), spesse volte la malattie viene diagnosticata molto tempo dopo la comparsa per via dei sintomi che compaiono in ritardo: si intende quindi che si parla di una malattia molto subdola che spesse volte lascia poche speranze di vita. Uno strumento, utilizzato assieme alla terapie mediche, è quello della modellizzazione matematica: essa cerca di descrivere e prevedere, tramite equazioni, lo sviluppo di questo processo e, come ben si intenderà, poter conoscere in anticipo quel che accadrà al paziente è sicuramente un fattore molto rilevante per la sua cura. E' interessante vedere come una materia spesso definita come "noiosa" ed ''inutile'', la matematica, possa essere utilizzata per i più svariati, come -nel caso specifico- quello nobile della cura di un malato: questo è un aspetto di tale materia che mi ha sempre affascinato ed è anche una delle ragioni che mi ha spinto a scrivere questo elaborato. La tesi, dopo una descrizione delle basi oncologiche, si proporrà di descrivere le neoplasie da un punto di vista matematico e di trovare un algoritmo che possa prevedere l'effetto di una determinata cura. La descrizione verrà fatta secondo vari step, in modo da poter rendere la trattazione più semplice ed esaustiva per il lettore, sia egli esperto o meno dell'argomento trattato. Inizialmente si terrano distinti i modelli di dinamica tumorale da quelli di cinetica farmacologica, ma poi verrano uniti ed utilizzati assieme ad un algoritmo che permetta di determinare l'effetto della cura e i suoi effetti collaterali. Infine, nella lettura dell'elaborato il lettore deve tenere sempre a mente che si parla di modelli matematici ovvero di descrizioni che, per quanto possano essere precise, sono pur sempre delle approssimazioni della realtà: non per questo però bisogna disdegnare uno strumento così bello ed interessante -la matematica- che la natura ci ha donato.
Resumo:
Nel presente lavoro di tesi, in seguito ad acquisizioni di dati effettuate nella sala prove del "Laboratorio di Macchine e Propulsione" della Scuola di Ingegneria e Architettura di Forlì sul turboshaft Allison 250 C18, in una prima fase sono state ricavate le mappe prestazionali dei singoli componenti del motore, elaborando i dati sperimentali in ambiente MatLab. Le acquisizioni sono state effettuate mediante l'utilizzo di sensori di pressione, temperatura e velocità installati in precedenza sul motore e opportunamente calibrati. In seguito alla realizzazione delle mappe prestazionali, si è passati all'allestimento completo di un modello dinamico in ambiente Simulink, del motore Allison 250 C18. Tale modello riproduce, in opportuni blocchi, ciascun componente facente parte della motorizzazione. Ogni blocco riceve in ingresso le caratteristiche fisiche di interesse del flusso (temperatura, pressione, calore specifico a pressione costante e gamma) provenienti dal blocco precedente tramite un "filo", le rielabora al suo interno risolvendo le equazioni tipiche di ciascun componente e interpolando le mappe di prestazione ricavate precedentemente in MatLab, e le invia come input al blocco successivo o in retroazione ai blocchi precedenti. In ogni blocco è stato realizzato un sistema di dinamica di pressione che, ad ogni istante, risolve un'equazione differenziale dipendente dalla differenza di portata a monte e a valle di un componente e dal volume di controllo, che restituisce il valore di pressione in uscita proporzionale alla variazione di portata stessa. Nel presente lavoro di tesi si è cercato di stabilizzare questo complesso sistema in una condizione di progetto, fissata a 30000 rpm del gruppo gas generator. Un sistema di controllo del numero di giri tramite variazione di portata di combustibile è stato realizzato al fine di poter, in futuro, far funzionare il modello anche fuori dalla condizione di progetto e riuscire a simulare l'andamento delle prove sperimentali reali.
Resumo:
Il punto di partenza dell'elaborato riguarda il modo in cui si giunge, a partire dalla relatività ristretta, a quella generale. Quest'ultima viene poi identificata come una teoria della gravitazione in cui si ottengono le equazioni di campo. Da qui si discute la soluzione delle equazioni di Einstein trovata da Schwarzschild evidenziandone i limiti. Si procede alla estensione di questa soluzione introducendo dapprima le coordinate di Eddington-Finkelstein e poi l'estensione massima data da Kruskal. Infine viene mostrato come è possibile compattificare l'infinito spaziotempo in una regione finita senza alterare la struttura causale. Questo viene fatto tramite delle trasformazioni particolari: le trasformazioni conformi. I diagrammi spaziotemporali che si ottengono dopo la compattificazione conforme sono conosciuti come i digrammi di Penrose e qui si vede come ottenere quelli dello spaziotempo di Minkowski e quelli dello spaziotempo della soluzione di Schwarzschild.
Resumo:
Questo lavoro ha l’obbiettivo di analizzare i principi che stanno alla base della plasmonica, partendo dallo studio dei plasmoni di superficie fino ad arrivare alle loro applicazioni. La prima parte di questa tesi riguarda l’aspetto teorico. Essendo essenzialmente eccitazioni collettive degli elettroni nell'interfaccia fra un conduttore ed un isolante, descritti da onde elettromagnetiche evanescenti, questi plasmoni superficiali, o polaritoni plasmonici di superficie (SPP), vengono studiati partendo dalle equazioni di Maxwell. Viene spiegato come questi SPP nascano dall’accoppiamento dei campi elettromagnetici con le oscillazioni degli elettroni del materiale conduttore e, utilizzando l’equazione dell’onda, si descrivono le loro proprietà in singola interfaccia e in sistemi multistrato. Il quinto capitolo analizza le metodologie di eccitazione di SPP. Sono descritte varie tecniche per l’accoppiamento di fase, per accennare poi a eccitazioni di SPP in guide d’onda, tramite fibra ottica. L’ultimo capitolo della prima parte è dedicato alla seconda tipologia di plasmoni: i plasmoni di superficie localizzati (LSP). Questi sono eccitazioni a seguito dell’accoppiamento fra elettroni di conduzione di nanoparticelle metalliche e il campo elettromagnetico ma che, a differenza dei SPP, non si propagano. Viene esplorata la fisica dei LSP trattando prima le interazioni delle nanoparticelle con le onde elettromagnetiche, poi descrivendo i processi di risonanza in una varietà di particelle differenti in numero, forma, dimensione e ambiente di appartenenza. La seconda parte della tesi riguarda invece alcune applicazioni. Vengono proposti esempi di controllo della propagazione di SPP nel contesto delle guide d’onda, analizzando l’indirizzamento di SPP su superfici planari e spiegando come le guide d’onda di nanoparticelle metalliche possano essere utilizzate per trasferire energia. Infine, viene introdotta la teoria di Mie per la diffusione e l’assorbimento della luce da parte di nanoparticelle metalliche, per quanto riguarda la colorazione apparente, con esempi sulla colorazione vitrea, come la famosa coppa di Licurgo.
Resumo:
Nel 2020 verrà lanciata la missione spaziale Euclid per investigare la natura dell’energia oscura. Euclid otterrà un’immensa quantità di dati fotometrici e spettrometrici finalizzati, soprattutto, alla misura di lenti gravitazionali deboli e oscillazioni acustiche barioniche. In questa tesi daremo una descrizione generale dello strumento e della scienza che potrà essere fatta grazie ad esso. In particolare, nel capitolo 2 verrà fornita una introduzione alla cosmologia e verranno introdotti i vari parametri cosmologici che Euclid sarà in grado di vincolare. Nel capitolo 3 si farà un’analisi dei principali fenomeni fisici che Euclid indagherà. Nel capitolo 4 verrà data una panoramica del satellite, descrivendo in dettaglio gli obiettivi, cosa osserverà e come farà le osservazioni, e quali sono gli strumenti che lo compongono (satellite, telescopio, VIS e NISP). Infine, nel capitolo 5 verranno mostrati dei primi risultati preliminari, ottenuti in questa tesi, riguardanti il test di un programma che servirà per la misura della funzione di correlazione a due punti di Euclid.
Resumo:
Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.
Resumo:
In questa tesi viene affrontato il problema della stabilità delle strutture stellari da un punto di vista relativistico. La stella è approssimata ad un fluido perfetto a simmetria sferica, e le equazioni che ne governano la struttura vengono ricavate grazie alle risoluzione delle equazioni di campo della relatività generale in questo caso particolare. L'approssimazione di fluido perfetto permette anche di ricavare un'equazione di stato che lega densità di energia e pressione tramite un parametro, detto parametro di rigidità. Un'analisi del comportamento della materia al variare della densità consente di stabilire l'andamento di questo parametro, mentre uno studio delle piccole oscillazioni radiali della stella permette di stabilire quali sono i valori del parametro che consentono un equilibrio stabile. La stabilità risulta possibile in due differenti intervalli di densità, che corrispondono ai due tipici stadi finali dell'evoluzione stellare: nana bianca e stella di neutroni. Grazie alle equazioni che descrivono la struttura stellare è possibile stabilire, nei due intervalli di densità, quale sia il valore che la massa della stella non può superare: si ricavano il limite di Chandrasekhar e il limite di Oppenheimer-Volkoff. Infine viene mostrato come la relatività generale imponga un limite assoluto alla stabilità di una distribuzione di materia, sostenuta da una qualsiasi forza della natura: superato questo confine, la materia non può fare altro che collassare in un buco nero.
Resumo:
In questa tesi si mostra che la caratteristica di Eulero e l'orientabilità (o non orientabilità) sono invarianti topologici per le superfici compatte e si studia il teorema di classificazione per tali superfici.
Resumo:
Lo scopo della prima parte di questo elaborato è quello di mostrare come l'approccio geometrico, qui principalmente basato sull'algebra delle forme differenziali, possa semplificare la forma delle equazioni di Maxwell. Verificheremo che tutte le leggi dell'elettromagnetismo possono essere derivate da aspetti puramente geometrici e poi riconosciute come leggi fisiche imponendo le opportune restrizioni. Nella seconda parte trattiamo vari aspetti del monopolo magnetico. Prima lo introdurremo seguendo il percorso di Dirac, poi risolveremo analiticamente i problemi che esso presenta e alla fine inquadreremo i risultati che abbiamo ottenuto all'interno dell'algebra delle forme differenziali.
Resumo:
Si fornisce un'introduzione al formalismo geometrico della meccanica classica e quantistica, studiando dapprima lo spazio delle fasi come varietà simplettica ricavando le equazioni di Hamilton. Si descrivono in seguito gli strumenti necessari per operare in uno spazio di Hilbert, i quali risultano più complessi di quelli utilizzati per descrivere lo spazio delle fasi classico. In particolare notiamo l'esigenza di definire anche una struttura riemanniana sugli spazi complessi per poter ivi definire il prodotto scalare, le parentesi e i commutatori simmetrici.
Resumo:
Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.
Resumo:
Il modello di Bondi rappresenta il modello di accrescimento più semplice, in quanto studia l'accrescimento su un BH isolato immerso in una distribuzione di gas infinita. In questa semplice trattazione puramente idrodinamica vengono trascurati molti aspetti importanti, come ad esempio il momento angolare, il campo magnetico, gli effetti relativistici, ecc. L'obiettivo di questa Tesi consiste nell'affinare tale modello aggiungendo alcune nuove componenti. In particolare, vogliamo studiare come queste nuove componenti possano influire sul tasso di accrescimento della materia. Dopo una Introduzione (Capitolo 1), nel Capitolo 2 viene presentato il modello di Bondi originale, con lo scopo di ricostruire il procedimento matematico che porta alla soluzione e di verificare il funzionamento del codice numerico scritto per la soluzione dell'equazione di Bondi finale. Tuttavia, il modello di accrescimento sferico stazionario tratta il potenziale gravitazionale di un oggetto puntiforme isolato, mentre in questo lavoro di Tesi si vogliono considerare i BH che si trovano al centro delle galassie. Pertanto, nel Capitolo 3 è stata rivisitata la trattazione matematica del problema di Bondi aggiungendo alle equazioni il potenziale gravitazionale prodotto da una galassia con profilo di densità descritto dal modello di Hernquist. D'altronde, ci si aspetta che l'energia potenziale gravitazionale liberata nell'accrescimento, almeno parzialmente, venga convertita in radiazione. In regime otticamente sottile, nell'interazione tra la radiazione e la materia, domina l'electron scattering, il che permette di estendere in maniera rigorosa la trattazione matematica del problema di Bondi prendendo in considerazione gli effetti dovuti alla pressione di radiazione. Infatti, in un sistema a simmetria sferica la forza esercitata dalla pressione di radiazione segue l'andamento "1/r^2", il che comporta una riduzione della forza gravitazionale della stessa quantità per tutti i raggi. Tale argomento rappresenta l'oggetto di studio del Capitolo 4. L'idea originale alla base di questo lavoro di Tesi, che consiste nell'unire i due modelli sopra descritti (ossia il modello di Bondi con la galassia e il modello di Bondi con feedback radiativo) in un unico modello, è stata sviluppata nel Capitolo 5. Utilizzando questo nuovo modello abbiamo cercato di determinare delle "ricette" per la stima del tasso di accrescimento, da utilizzare nell'analisi dei dati osservativi oppure da considerare nell'ambito delle simulazioni numeriche. Infine, nel Capitolo 6 abbiamo valutato alcune applicazioni del modello sviluppato: come una possibile soluzione al problema di sottoluminosità dei SMBH al centro di alcune galassie dell'universo locale; per la stima della massa del SMBH imponendo la condizione di equilibrio idrostatico; un possibile impiego dei risultati nell'ambito dei modelli semi-analitici di coevoluzione di galassie e SMBH al centro di esse.