184 resultados para emissione galassie ellittiche
Resumo:
In questo elaborato si illustra una delle principali proprietà godute dalle funzioni armoniche: la disuguaglianza di Harnack, dal nome del matematico che la dimostrò nel 1887. Nella sua formulazione più semplice, essa afferma che se una funzione armonica è non negativa, allora l'estremo superiore di tale funzione su una palla euclidea è controllato dall'alto dall'estremo inferiore della funzione sulla stessa palla, a meno di una costante moltiplicativa dipendente solo dalla dimensione. Una simile disuguaglianza è soddisfatta anche da soluzioni di equazioni alle derivate parziali più generali dell'equazione di Laplace. Ad esempio, J. Moser nel 1961 dimostra che le soluzioni deboli di equazioni differenziali ellittiche lineari soddisfano una disuguaglianza di tipo Harnack. Tale risultato è argomento dell'ultimo capitolo di questo elaborato.
Resumo:
Lo scenario oggi più accreditato per spiegare la formazione delle galassie è quello del merging gerarchico: Sgr è una delle prove più importanti a favore di questo scenario. Sgr è una galassia satellite della MW ed è il caso migliore di processo di distruzione mareale in corso dalla MW. La sua distruzione ha contribuito alla costituzione dell'alone della Via Lattea. Di Sgr si osserva solo ciò che ne rimane del corpo principale, i suoi streams ed il suo nucleo, dominato dall'ammasso metal-poor M54. È la presenza di M54 che rende complessa la selezione di stelle metal-poor di Sgr: il main-body di Sgr è rarefatto e fortemente contaminato da stelle galattiche ed il suo nucleo si sovrappone con M54 rendendo quasi impossibile identificare stelle di Sagittario metal-poor non appartenenti ad M54. Fino ad ora l'unico metodo utilizzato per selezionare i targets per studiare la chimica di Sgr ha fatto uso della loro posizione sul CMD: questo metodo introduce un bias, selezionando solo le stelle metal-rich di Sgr. In questo lavoro sono state studiate 23 stelle metal-poor appartenenti al main-body di Sgr ma fuori dal raggio mareale di M54 selezionate grazie ai moti propri dalla missione GAIA. Gli spettri analizzati sono stati ottenuti con lo spettrografo UVES-FLAMES del VLT (ESO)da cui è stata ottenuta l'abbondanza di 17 elementi sia di stelle di Sgr che in 12 stelle di M54. Questo campione di abbondanze chimiche permette per la prima volta: (a) di comprendere la storia di arricchimento chimico di Sgr in un ampio range di metallicità (mai studiato finora) e (b) di confrontare la chimica di Sgr con quella di M54. Tali abbondanze dimostrano come Sgr abbia avuto un'evoluzione chimica diversa da quella della MW, con un contributo inferiore da parte di stelle massive, probabilmente a causa del suo basso SFR. Inoltre è stato possibile determinare la forte somiglianza chimica tra Sgr e M54, confermando che i due sistemi condividono la stessa storia di arricchimento chimico.
Resumo:
Si pensa che i campi magnetici siano presenti in qualsiasi oggetto celeste, e nel mezzo tra di essi. Non siamo capaci di misurare questi campi in modo diretto, ma possiamo derivare delle misure da metodi indiretti, osservando e analizzando gli effetti che essi hanno sulla radiazione. Questi possono riguardare sia come la radiazione si propaga sia come essa viene generata. I campi magnetici esercitano una forza sul plasma cosmico, e possono influenzare in maniera più o meno marcata il moto di questo. Essi non possono competere con le interazioni gravitazionali in gioco nelle galassie, o in scale ancora più grandi, ma giocano un ruolo fondamentale nei moti del gas sulle piccole scale. In questo scritto analizzeremo per prima cosa i principali metodi utili per la rilevazione dei campi magnetici in astrofisica senza entrare eccessivamente nel dettaglio, ma riportando gli aspetti essenziali sia dal punto di vista descrittivo dell’effetto fisico sul quale si basano, sia dal punto di vista delle formule. Dopodiché si passera ad analizzare i principali scenari ipotizzati per l’origine dei campi magnetici di una galassia. Si accennerà anche all’amplificazione di piccoli campi originari per raggiungere i valori osservati oggigiorno. Al fine di trattare questo particolare aspetto, si spenderà un capitolo per parlare del congelamento del campo nella materia. Infine nell’ultimo capitolo si affronterà il campo magnetico della Via Lattea. Ci si concentrerà in tre regioni diverse della galassia: l’halo, il disco e la zona centrale. Per questi si riporteranno i risultati ottenuti utilizzando i vari metodi precedentemente descritti, al fine di ottenere un’idea di quale sia la struttura a larga scala del campo magnetico della galassia.
Resumo:
In questa trattazione, sarà data una definizione di energia potenziale partendo dal modello della gravità Newtoniana, e verranno illustrati - molto brevemente, e senza entrare troppo nei dettagli - alcuni fenomeni astrofisici nei quali l’interazione gravitazionale tra corpi (e dunque il concetto di energia gravitazionale) gioca un ruolo fondamentale. In particolare, verrà introdotto il concetto di buco nero, per poi accennare alla fisica dell’accrescimento caratteristica dei nuclei galattici attivi. In seguito, verrà esposto il teorema del Viriale in forma scalare, se ne accennerà il ruolo nella catastrofe gravotermica riguardante gli ammassi globulari, e quello nella nascita di nuove stelle tramite l’instabilità di Jeans. Infine, verrà trattata la curva di rotazione delle galassie a spirale, e si parlerà del ragionamento che ha portato all’intuizione della materia oscura, di cui l’Universo è pervaso.