494 resultados para lambda-calcolo, teoremi di separazione, risorse, espansione di Taylor


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trent’anni or sono il concetto di ottimalità venne formulato in senso teorico da Lévy, ma solo un decennio dopo Lamping riesce a darne elegante implementazione algoritmica. Realizza un sistema di riduzione su grafi che si scoprirà poi avere interessanti analogie con la logica lineare presentata nello stesso periodo da Girard. Ma l’ottimalità è davvero ottimale? In altre parole, l’implementazione ottimale del λ calcolo realizzata attraverso i grafi di condivisione, è davvero la migliore strategia di riduzione, in termini di complessità? Dopo anni di infondati dubbi e di immeritato oblìo, alla conferenza LICS del 2007, Baillot, Coppola e Dal Lago, danno una prima risposta positiva, seppur parziale. Considerano infatti il caso particolare delle logiche affini elementare e leggera, che possiedono interessanti proprietà a livello di complessità intrinseca e semplificano l’arduo problema. La prima parte di questa tesi presenta, in sintesi, la teoria dell’ottimalità e la sua implementazione condivisa. La seconda parte affronta il tema della sua complessità, a cominciare da una panoramica dei più importanti risultati ad essa legati. La successiva introduzione alle logiche affini, e alle relative caratteristiche, costituisce la necessaria premessa ai due capitoli successivi, che presentano una dimostrazione alternativa ed originale degli ultimi risultati basati appunto su EAL e LAL. Nel primo dei due capitoli viene definito un sistema intermedio fra le reti di prova delle logiche e la riduzione dei grafi, nel secondo sono dimostrate correttezza ed ottimalità dell’implementazione condivisa per mezzo di una simulazione. Lungo la trattazione sono offerti alcuni spunti di riflessione sulla dinamica interna della β riduzione riduzione e sui suoi legami con le reti di prova della logica lineare.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesi sulla progettazione meccanica e il calcolo strutturale FEM di un sistema di afferraggio facente parte di una macchina automanica nel campo del packaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esempio di applicazione del calcolo termico di verifica per generatori di vapore a tre giri da fumo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'obiettivo di questa tesi è lo studio del legame tra la volatilità implicita e la volatilità attuale del titolo sottostante. In particolare, si cercherà di capire quanto conosciamo della volatilità del titolo sottostante se si osserva sul mercato un numero sufficiente di opzioni Call e Put Europee che dipendono da questo sottostante. Tale relazione è oggetto d'interesse pratico per gli attori dei mercati delle opzioni: si tratta di due grandezze fondamentali usate per prezzare i derivati finanziari. L'approccio usato verte alla dinamica dei processi e permetterà di mettere in luce nuove caratteristiche della volatilità implicita, nonché trovare una sua approssimazione. La dinamica del suddetto parametro è cruciale nelle operazioni di copertura e gestione del rischio per i portafogli di opzioni. Avendo a disposizione un modello per la dinamica della volatilità implicita, è possibile calcolare in maniera consistente il vega risk. La dinamica è altrettanto importante per la copertura delle opzioni esotiche, quali le opzioni barrier. Per riuscire a raggiungere il fine predisposto, si considera un modello di mercato libero da arbitraggi, il processo spot continuo e alcune assunzioni di non degenerazione. Ciononostante, si cerca di fare meno assunzioni possibili circa la dinamica del suddetto processo, in modo da trattare un modello di mercato generale, in particolare non completo. Attraverso questo approccio si potrà constatare che dai prezzi delle Call si riescono a ricavare interessanti informazioni riguardanti lo spot. Infatti, a partire da alcune condizioni di regolarità, si riesce a ricavare la dinamica della volatilità spot, osservando la dinamica della volatilità implicita.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La progettazione e la modellazione delle geometrie di corpi complessi come le schiere palettate delle turbomacchine, da sempre impegna il tecnico che, dapprima su carta, e successivamente in forma digitale, deve scontrarsi con le difficoltà sia analitiche di risoluzione di sistemi di equazioni differenziali, che geometriche a causa della doppia curvatura dei profili stessi. L’avvento dei calcolatori ha inevitabilmente giocato un ruolo fondamentale nella rapida evoluzione di tecniche di modellazione, calcolo e rappresentazione, per aiutare il progettista a risolvere completamente il problema, o almeno riscontrare risultati approssimativamente corretti, al fine di ridurre i tempi di realizzazione e i costi dell’impresa. Si vuole dunque cercare di descrivere le fasi che la progettazione oggi richiede, sfruttando quello che i software moderni mettono a disposizione, con l’obiettivo di mostrare uno dei molteplici percorsi che il progettista oggi può seguire per riuscire nel suo scopo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo di questo elaborato è la trattazione del momento di inerzia di un sistema meccanico rispetto ad una retta, con particolare attenzione alla struttura geometrica associata a questa nozione, ovvero all’ellissoide di inerzia. Si parte dalla definizione delle grandezze meccaniche fondamentali, passando per le equazioni cardinali della dinamica, arrivando a dimostrare il teorema di König. Viene poi studiato il momento di inerzia ed evidenziato il suo ruolo importante per la determinazione del momento angolare e dell’energia cinetica: in particolare è emersa la centralità dell’ellissoide d’inerzia. Si conclude con la dimostrazione del teorema di Huyghens e alcuni esempi espliciti di calcolo dell’ellissoide di inerzia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella definizione di incidente rilevante presente nelle Direttive Seveso, come pure nel loro recepimento nella legislazione italiana, rientrano eventi incidentali che abbiano conseguenze gravi per il bersaglio “ambiente”, sia in concomitanza sia in assenza di effetti dannosi per l’uomo. Tuttavia, a fronte di questa attenzione al bersaglio “ambiente” citata dalle norme, si constata la mancanza di indici quantitativi per la stima del rischio di contaminazione per i diversi comparti ambientali e, conseguentemente, anche di metodologie per il loro calcolo. Misure di rischio quantitative consolidate e modelli condivisi per la loro stima riguardano esclusivamente l’uomo, con la conseguenza che la valutazione di rischio per il bersaglio “ambiente” rimane ad un livello qualitativo o, al più, semi-quantitativo. Questa lacuna metodologica non consente di dare una piena attuazione al controllo ed alla riduzione del rischio di incidente rilevante, secondo l’obiettivo che le norme stesse mirano a raggiungere. E d‘altra parte il verificarsi periodico di incidenti con significativi effetti dannosi per l’ambiente, quali, ad esempio lo sversamento di gasolio nel fiume Lambro avvenuto nel febbraio 2010, conferma come attuale e urgente il problema del controllo del rischio di contaminazione ambientale. La ricerca presentata in questo lavoro vuole rappresentare un contributo per colmare questa lacuna. L’attenzione è rivolta al comparto delle acque superficiali ed agli sversamenti di liquidi oleosi, ovvero di idrocarburi insolubili in acqua e più leggeri dell’acqua stessa. Nel caso in cui il rilascio accidentale di un liquido oleoso raggiunga un corso d’acqua superficiale, l’olio tenderà a formare una chiazza galleggiante in espansione trasportata dalla corrente e soggetta ad un complesso insieme di trasformazioni fisiche e chimiche, denominate fenomeni di “oil weathering”. Tra queste rientrano l’evaporazione della frazione più volatile dell’olio e la dispersione naturale dell’olio in acqua, ovvero la formazione di una emulsione olio-in-acqua nella colonna d’acqua al di sotto della chiazza di olio. Poiché la chiazza si muove solidale alla corrente, si può ragionevolmente ritenere che l’evaporato in atmosfera venga facilmente diluito e che quindi la concentrazione in aria dei composti evaporati non raggiunga concentrazioni pericolose esternamente alla chiazza stessa. L’effetto fisico dannoso associato allo sversamento accidentale può pertanto essere espresso in doversi modi: in termini di estensione superficiale della chiazza, di volume di olio che emulsifica nella colonna d’acqua, di volume della colonna che si presenta come emulsione olio-in-acqua, di lunghezza di costa contaminata. In funzione di questi effetti fisici è possibile definire degli indici di rischio ambientale analoghi alle curve di rischio sociale per l’uomo. Come una curva di rischio sociale per l’uomo esprime la frequenza cumulata in funzione del numero di morti, così le curve di rischio sociale ambientale riportano la frequenza cumulata in funzione dell’estensione superficiale della chiazza, ovvero la frequenza cumulata in funzione del volume di olio che emulsifica in acqua ovvero la frequenza cumulata in funzione del volume di colonna d’acqua contaminato ovvero la frequenza cumulata in funzione della lunghezza di costa contaminata. Il calcolo degli indici di rischio così definiti può essere effettuato secondo una procedura analoga al calcolo del rischio per l’uomo, ovvero secondo i seguenti passi: 1) descrizione della sorgente di rischio; 2) descrizione del corso d’acqua che può essere contaminato in caso di rilascio dalla sorgente di rischio; 3) identificazione, degli eventi di rilascio e stima della loro frequenza di accadimento; 4) stima, per ogni rilascio, degli effetti fisici in termini di area della chiazza, di volume di olio emulsificato in acqua, di volume dell’emulsione olio-in-acqua, lunghezza di costa contaminata; 5) ricomposizione, per tutti i rilasci, degli effetti fisici e delle corrispondenti frequenze di accadimento al fine di stimare gli indici di rischio sopra definiti. Al fine di validare la metodologia sopra descritta, ne è stata effettuata l’applicazione agli stabilimenti a rischio di incidente rilevante presenti nei bacini secondari che fanno parte del bacino primario del Po. E’ stato possibile calcolare gli indici di rischio per ogni stabilimento, sia in riferimento al corso d’acqua del bacino secondario a cui appartengono, sia in riferimento al Po, come pure ottenere degli indici di rischio complessivi per ogni affluente del Po e per il Po stesso. I risultati ottenuti hanno pienamente confermato la validità degli indici di rischio proposti al fine di ottenere una stima previsionale del rischio di contaminazione dei corsi d’acqua superficiali, i cui risultati possano essere utilizzati per verificare l’efficacia di diverse misure di riduzione del rischio e per effettuare una pianificazione d’emergenza che consenta, in caso di incidente, di contenere, recuperare e favorire la dispersione dell’olio sversato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo lavoro di tesi si propone di verificare la validità della nuova specifica tecnica UNI/TS 11300-Parte 3, riguardante i consumi energetici degli edifici nella stagione estiva. Pertanto tale specifica tecnica, ancora in fase d’inchiesta pubblica, è stata applicata ad un caso reale, quale un complesso di edifici ad uso terziario, con il duplice obiettivo di analizzarne lo specifico metodo di calcolo e di comprovarne l’efficacia. Nel corso dello studio, prendendo in esame nella parte introduttiva argomenti quali i consumi in edilizia, gli aspetti normativi e le modalità di produzione del freddo, si è giunti infine a calcolare il fabbisogno di energia primaria per il raffrescamento del complesso di riferimento, e nella parte conclusiva sono state fornite indicazioni su eventuali modifiche da apportare alla normativa per ridurre i consumi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro di tesi si colloca nell’ambito della valutazione del rischio di incidente rilevante. Ai sensi della normativa europea (direttive Seveso) e del loro recepimento nella legislazione nazionale (D.Lgs. 334/99 e s.m.i.) un incidente rilevante è costituito da un evento incidentale connesso al rilascio di sostanze pericolose in grado di causare rilevanti danni all’uomo e/o all’ambiente. Ora, se da un lato esistono indici di rischio quantitativi per il bersaglio ”uomo” da tempo definiti e universalmente adottati nonché metodologie standardizzate e condivise per il loro calcolo, dall’altro non vi sono analoghi indici di rischio per il bersaglio “ambiente” comunemente accettati né, conseguentemente, procedure per il loro calcolo. Mancano pertanto anche definizioni e metodologie di calcolo di indici di rischio complessivo, che tengano conto di entrambi i bersagli citati dalla normativa. Al fine di colmare questa lacuna metodologica, che di fatto non consente di dare pieno adempimento alle stesse disposizioni legislative, è stata sviluppata all’interno del Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali dell’Università degli Studi di Bologna una ricerca che ha portato alla definizione di indici di rischio per il bersaglio “ambiente” e alla messa a punto di una procedura per la loro stima. L’attenzione è stata rivolta in modo specifico al comparto ambientale del suolo e delle acque sotterranee (falda freatica) ed ai rilasci accidentali da condotte di sostanze idrocarburiche immiscibili e più leggere dell’acqua, ovvero alle sostanze cosiddette NAPL – Non Acqueous Phase Liquid, con proprietà di infiammabilità e tossicità. Nello specifico si sono definiti per il bersaglio “ambiente” un indice di rischio ambientale locale rappresentato, punto per punto lungo il percorso della condotta, dai volumi di suolo e di acqua contaminata, nonché indici di rischio ambientale sociale rappresentati da curve F/Vsuolo e F/Sacque, essendo F la frequenza con cui si hanno incidenti in grado di provocare contaminazioni di volumi di suolo e di superfici di falda uguali o superiori a Vsuolo e Sacque. Tramite i costi unitari di decontaminazione del suolo e delle acque gli indici di rischio ambientale sociale possono essere trasformati in indici di rischio ambientale sociale monetizzato, ovvero in curve F/Msuolo e F/Macque, essendo F la frequenza con cui si hanno incidenti in grado di provocare inquinamento di suolo e di acque la cui decontaminazione ha costi uguali o superiori a Msuolo ed Macque. Dalla combinazione delle curve F/Msuolo e F/Macque è possibile ottenere la curva F/Mambiente, che esprime la frequenza degli eventi incidentali in grado di causare un danno ambientale di costo uguale o superiore a Mambiente. Dalla curva di rischio sociale per l’uomo ovvero dalla curva F/Nmorti, essendo F la frequenza con cui si verificano incidenti in grado di determinare un numero di morti maggiore o uguale ad Nmorti, tramite il costo unitario della vita umana VSL (Value of a Statistical Life), è possibile ottenete la curva F/Mmorti, essendo F la frequenza con cui si verificano incidenti in grado di determinare un danno monetizzato all’uomo uguale o superiore ad Mmorti. Dalla combinazione delle curve F/Mambiente ed F/Mmorti è possibile ottenere un indice di rischio sociale complessivo F/Mtotale, essendo F la frequenza con cui si verifica un danno economico complessivo uguale o superiore ad Mtotale. La procedura ora descritta è stata implementata in un apposito software ad interfaccia GIS denominato TRAT-GIS 4.1, al fine di facilitare gli onerosi calcoli richiesti nella fase di ricomposizione degli indici di rischio. La metodologia è stata fino ad ora applicata ad alcuni semplici casi di studio fittizi di modeste dimensioni e, limitatamente al calcolo del rischio per il bersaglio “ambiente”, ad un solo caso reale comunque descritto in modo semplificato. Il presente lavoro di tesi rappresenta la sua prima applicazione ad un caso di studio reale, per il quale sono stati calcolati gli indici di rischio per l’uomo, per l’ambiente e complessivi. Tale caso di studio è costituito dalla condotta che si estende, su un tracciato di 124 km, da Porto Marghera (VE) a Mantova e che trasporta greggi petroliferi. La prima parte del lavoro di tesi è consistita nella raccolta e sistematizzazione dei dati necessari alla stima delle frequenze di accadimento e delle conseguenze per l’uomo e per l’ambiente degli eventi dannosi che dalla condotta possono avere origine. In una seconda fase si è proceduto al calcolo di tali frequenze e conseguenze. I dati reperiti hanno riguardato innanzitutto il sistema “condotta”, del quale sono stati reperiti da un lato dati costruttivi (quali il diametro, la profondidi interramento, la posizione delle valvole sezionamento) e operativi (quali la portata, il profilo di pressione, le caratteristiche del greggio), dall’altro informazioni relative alle misure di emergenza automatiche e procedurali in caso di rilascio, al fine di stimare le frequenze di accadimento ed i termini “sorgente” (ovvero le portate di rilascio) in caso di rotture accidentali per ogni punto della condotta. In considerazione delle particolarità della condotta in esame è stata sviluppata una procedura specifica per il calcolo dei termini sorgente, fortemente dipendenti dai tempi degli interventi di emergenza in caso di rilascio. Una ulteriore fase di raccolta e sistematizzazione dei dati ha riguardato le informazioni relative all’ambiente nel quale è posta la condotta. Ai fini del calcolo del rischio per il bersaglio “uomo” si sono elaborati i dati di densità abitativa nei 41 comuni attraversati dall’oleodotto. Il calcolo dell’estensione degli scenari incidentali dannosi per l’uomo è stato poi effettuato tramite il software commerciale PHAST. Allo scopo della stima del rischio per il bersaglio “ambiente” è stata invece effettuata la caratterizzazione tessiturale dei suoli sui quali corre l’oleodotto (tramite l’individuazione di 5 categorie di terreno caratterizzate da diversi parametri podologici) e la determinazione della profondità della falda freatica, al fine di poter calcolare l’estensione della contaminazione punto per punto lungo la condotta, effettuando in tal modo l’analisi delle conseguenze per gli scenari incidentali dannosi per l’ambiente. Tale calcolo è stato effettuato con il software HSSM - Hydrocarbon Spill Screening Model gratuitamente distribuito da US-EPA. La ricomposizione del rischio, basata sui risultati ottenuti con i software PHAST e HSSM, ha occupato la terza ed ultima fase del lavoro di tesi; essa è stata effettuata tramite il software TRAT-GIS 4.1, ottenendo in forma sia grafica che alfanumerica gli indici di rischio precedentemente definiti. L’applicazione della procedura di valutazione del rischio al caso dell’oleodotto ha dimostrato come sia possibile un’analisi quantificata del rischio per l’uomo, per l’ambiente e complessivo anche per complessi casi reali di grandi dimensioni. Gli indici rischio ottenuti consentono infatti di individuare i punti più critici della condotta e la procedura messa a punto per il loro calcolo permette di testare l’efficacia di misure preventive e protettive adottabili per la riduzione del rischio stesso, fornendo al tempo gli elementi per un’analisi costi/benefici connessa all’implementazione di tali misure. Lo studio effettuato per la condotta esaminata ha inoltre fornito suggerimenti per introdurre in alcuni punti della metodologia delle modifiche migliorative, nonché per facilitare l’analisi tramite il software TRAT-GIS 4.1 di casi di studio di grandi dimensioni.