45 resultados para Reinforcement Learning,Deep Neural Networks,Python,Stable Baseline,Gym
Resumo:
Nella prima parte del mio lavoro viene presentato uno studio di una prima soluzione "from scratch" sviluppata da Andrew Karpathy. Seguono due miei miglioramenti: il primo modificando direttamente il codice della precedente soluzione e introducendo, come obbiettivo aggiuntivo per la rete nelle prime fasi di gioco, l'intercettazione della pallina da parte della racchetta, migliorando l'addestramento iniziale; il secondo é una mia personale implementazione utilizzando algoritmi più complessi, che sono allo stato dell'arte su giochi dell'Atari, e che portano un addestramento molto più veloce della rete.
Resumo:
L'image captioning è un task di machine learning che consiste nella generazione di una didascalia, o caption, che descriva le caratteristiche di un'immagine data in input. Questo può essere applicato, ad esempio, per descrivere in dettaglio i prodotti in vendita su un sito di e-commerce, migliorando l'accessibilità del sito web e permettendo un acquisto più consapevole ai clienti con difficoltà visive. La generazione di descrizioni accurate per gli articoli di moda online è importante non solo per migliorare le esperienze di acquisto dei clienti, ma anche per aumentare le vendite online. Oltre alla necessità di presentare correttamente gli attributi degli articoli, infatti, descrivere i propri prodotti con il giusto linguaggio può contribuire a catturare l'attenzione dei clienti. In questa tesi, ci poniamo l'obiettivo di sviluppare un sistema in grado di generare una caption che descriva in modo dettagliato l'immagine di un prodotto dell'industria della moda dato in input, sia esso un capo di vestiario o un qualche tipo di accessorio. A questo proposito, negli ultimi anni molti studi hanno proposto soluzioni basate su reti convoluzionali e LSTM. In questo progetto proponiamo invece un'architettura encoder-decoder, che utilizza il modello Vision Transformer per la codifica delle immagini e GPT-2 per la generazione dei testi. Studiamo inoltre come tecniche di deep metric learning applicate in end-to-end durante l'addestramento influenzino le metriche e la qualità delle caption generate dal nostro modello.
Resumo:
The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).
Resumo:
La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.
Resumo:
Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.
Resumo:
Nella letteratura economica e di teoria dei giochi vi è un dibattito aperto sulla possibilità di emergenza di comportamenti anticompetitivi da parte di algoritmi di determinazione automatica dei prezzi di mercato. L'obiettivo di questa tesi è sviluppare un modello di reinforcement learning di tipo actor-critic con entropy regularization per impostare i prezzi in un gioco dinamico di competizione oligopolistica con prezzi continui. Il modello che propongo esibisce in modo coerente comportamenti cooperativi supportati da meccanismi di punizione che scoraggiano la deviazione dall'equilibrio raggiunto a convergenza. Il comportamento di questo modello durante l'apprendimento e a convergenza avvenuta aiuta inoltre a interpretare le azioni compiute da Q-learning tabellare e altri algoritmi di prezzo in condizioni simili. I risultati sono robusti alla variazione del numero di agenti in competizione e al tipo di deviazione dall'equilibrio ottenuto a convergenza, punendo anche deviazioni a prezzi più alti.
Resumo:
Il tumore al seno si colloca al primo posto per livello di mortalità tra le patologie tumorali che colpiscono la popolazione femminile mondiale. Diversi studi clinici hanno dimostrato come la diagnosi da parte del radiologo possa essere aiutata e migliorata dai sistemi di Computer Aided Detection (CAD). A causa della grande variabilità di forma e dimensioni delle masse tumorali e della somiglianza di queste con i tessuti che le ospitano, la loro ricerca automatizzata è un problema estremamente complicato. Un sistema di CAD è generalmente composto da due livelli di classificazione: la detection, responsabile dell’individuazione delle regioni sospette presenti sul mammogramma (ROI) e quindi dell’eliminazione preventiva delle zone non a rischio; la classificazione vera e propria (classification) delle ROI in masse e tessuto sano. Lo scopo principale di questa tesi è lo studio di nuove metodologie di detection che possano migliorare le prestazioni ottenute con le tecniche tradizionali. Si considera la detection come un problema di apprendimento supervisionato e lo si affronta mediante le Convolutional Neural Networks (CNN), un algoritmo appartenente al deep learning, nuova branca del machine learning. Le CNN si ispirano alle scoperte di Hubel e Wiesel riguardanti due tipi base di cellule identificate nella corteccia visiva dei gatti: le cellule semplici (S), che rispondono a stimoli simili ai bordi, e le cellule complesse (C) che sono localmente invarianti all’esatta posizione dello stimolo. In analogia con la corteccia visiva, le CNN utilizzano un’architettura profonda caratterizzata da strati che eseguono sulle immagini, alternativamente, operazioni di convoluzione e subsampling. Le CNN, che hanno un input bidimensionale, vengono solitamente usate per problemi di classificazione e riconoscimento automatico di immagini quali oggetti, facce e loghi o per l’analisi di documenti.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
Resumo:
Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.
Resumo:
Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.
Resumo:
Il machine learning negli ultimi anni ha acquisito una crescente popolarità nell’ambito della ricerca scientifica e delle sue applicazioni. Lo scopo di questa tesi è stato quello di studiare il machine learning nei suoi aspetti generali e applicarlo a problemi di computer vision. La tesi ha affrontato le difficoltà del dover spiegare dal punto di vista teorico gli algoritmi alla base delle reti neurali convoluzionali e ha successivamente trattato due problemi concreti di riconoscimento immagini: il dataset MNIST (immagini di cifre scritte a mano) e un dataset che sarà chiamato ”MELANOMA dataset” (immagini di melanomi e nevi sani). Utilizzando le tecniche spiegate nella sezione teorica si sono riusciti ad ottenere risultati soddifacenti per entrambi i dataset ottenendo una precisione del 98% per il MNIST e del 76.8% per il MELANOMA dataset
Resumo:
L’obiettivo principale della tesi, è quello di mettere a confronto soluzioni basate su tecnologie diverse e individuare la soluzione migliore che permetta di stabilire se le persone inquadrate in un’immagine indossano correttamente o meno la mascherina protettiva come previsto dalle norme anti-covid. Per raggiungere l’obiettivo verranno confrontate diverse architetture costruite per lo stesso scopo e che si basano sui principi di Machine Learning e Deep Learning, e verranno messe in funzione su insieme di dataset individuati, che sono stati creati per propositi affini.