16 resultados para Infinito


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo elaborato realizzato assieme alla creazione di un link nel sito "progettomatematic@" tratta dell'infinito in tre modi diversi: la storia, l'applicazione ai frattali e alla crittografia. Inizia con una breve storia dai greci all'antinomia di Russel; poi si parla dei frattali in natura, di misura e dimensione di Hausdorff, polvere di Cantor e fiocco di neve di Koch. Infine si trova un riassunto dei cifrari storici famosi, con particolare attenzione al cifrario di Vernam, alla teoria dell'entropia di Shannon e alla dimostrazione che otp ha sicurezza assoluta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'evoluzione del concetto di infinito nella storia presenta difficoltà che ancora oggi non sono sono state eliminate: la nostra mente è adattata al finito, per questo quando ha a che fare con oggetti troppo grandi o troppo piccoli, essa crea delle immagini che le permettono di vederli e manipolarli. Bisogna tuttavia stare attenti alle insidie che questi modelli nascondono, perché attribuiscono agli enti originali alcune proprietà fuorvianti, che ci portano a conclusioni distorte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'intento della tesi è realizzare un'unità didattica rivolta ad una classe di terza media, incentrata sullo studio della simmetria, partendo dall'osservazione delle arti decorative, nella fattispecie dei fregi, fino ad approdare all'analisi di particolari composizioni musicali. Nel primo capitolo ci proponiamo di classificare i \textit{gruppi dei fregi}, ovvero i sottogruppi discreti dell'insieme delle isometrie del piano euclideo in cui le traslazioni formano un sottogruppo ciclico infinito. Nel secondo capitolo trasferiremo i concetti introdotti nel primo capitolo dal piano euclideo a quello musicale. Nel terzo capitolo troveremo la descrizione della proposta didattica costruita sulla base dei contenuti raccolti nei primi due capitoli. Tale laboratorio è stato ideato nel tentativo di assolvere un triplice compito: fornire uno strumento in più per lo studio matematico delle isometrie e delle simmetrie, mostrare in che modo un processo fisico come la musica può essere rappresentato sul piano cartesiano come funzione del tempo, offrendo un primo assaggio di ciò che molti ragazzi dovranno affrontare nel prosieguo dei loro studi e infine introdurre lo studente ad un approccio più critico e ``scientifico'' all’arte in generale, e in particolare alla musica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I sistemi di versionamento moderni quali "git" o "svn" sono ad oggi basati su svariati algoritmi di analisi delle differenze (detti algoritmi di diffing) tra documenti (detti versioni). Uno degli algoritmi impiegati con maggior successo a tal proposito è il celebre "diff" di Unix. Tale programma è in grado di rilevare le modifiche necessarie da apportare ad un documento al fine di ottenerne un altro in termini di aggiunta o rimozione di linee di testo. L'insieme di tali modifiche prende nome di "delta". La crescente richiesta e applicazione dei documenti semi-strutturati (ed in particolar modo dei documenti XML) da parte della comunità informatica soprattutto in ambito web ha motivato la ricerca di algoritmi di diffing più raffinati che operino al meglio su tale tipologia di documenti. Svariate soluzioni di successo sono state discusse; algoritmi ad alte prestazioni capaci di individuare differenze più sottili della mera aggiunta o rimozione di testo quali il movimento di interi nodi, il loro riordinamento finanche il loro incapsulamento e così via. Tuttavia tali algoritmi mancano di versatilità. L'incapsulamento di un nodo potrebbe essere considerata una differenza troppo (o troppo poco) generale o granulare in taluni contesti. Nella realtà quotidiana ogni settore, pubblico o commerciale, interessato a rilevare differenze tra documenti ha interesse nell'individuarne sempre e soltanto un sottoinsieme molto specifico. Si pensi al parlamento italiano interessato all'analisi comparativa di documenti legislativi piuttosto che ad un ospedale interessato alla diagnostica relativa alla storia clinica di un paziente. Il presente elaborato di tesi dimostra come sia possibile sviluppare un algoritmo in grado di rilevare le differenze tra due documenti semi-strutturati (in termini del più breve numero di modifiche necessarie per trasformare l'uno nell'altro) che sia parametrizzato relativamente alle funzioni di trasformazione operanti su tali documenti. Vengono discusse le definizioni essenziali ed i principali risultati alla base della teoria delle differenze e viene dimostrato come assunzioni più blande inducano la non calcolabilità dell'algoritmo di diffing in questione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi è incentrata sull'analisi della formula di Dupire, che permette di ottenere un'espressione della volatilità locale, nei modelli di Lévy esponenziali. Vengono studiati i modelli di mercato Merton, Kou e Variance Gamma dimostrando che quando si è off the money la volatilità locale tende ad infinito per il tempo di maturità delle opzioni che tende a zero. In particolare viene proposta una procedura di regolarizzazione tale per cui il processo di volatilità locale di Dupire ricrea i corretti prezzi delle opzioni anche quando si ha la presenza di salti. Infine tale risultato viene provato numericamente risolvendo il problema di Cauchy per i prezzi delle opzioni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La teoria dei sistemi dinamici studia l'evoluzione nel tempo dei sistemi fisici e di altra natura. Nonostante la difficoltà di assegnare con esattezza una condizione iniziale (fatto che determina un non-controllo della dinamica del sistema), gli strumenti della teoria ergodica e dello studio dell'evoluzione delle densità di probabilità iniziali dei punti del sistema (operatore di Perron-Frobenius), ci permettono di calcolare la probabilità che un certo evento E (che noi definiamo come evento raro) accada, in particolare la probabilità che il primo tempo in cui E si verifica sia n. Abbiamo studiato i casi in cui l'evento E sia definito da una successione di variabili aleatorie (prima nel caso i.i.d, poi nel caso di catene di Markov) e da una piccola regione dello spazio delle fasi da cui i punti del sistema possono fuoriuscire (cioè un buco). Dagli studi matematici sui sistemi aperti condotti da Keller e Liverani, si ricava una formula esplicita del tasso di fuga nella taglia del buco. Abbiamo quindi applicato questo metodo al caso in cui l'evento E sia definito dai punti dello spazio in cui certe osservabili assumono valore maggiore o uguale a un dato numero reale a, per ricavare l'andamento asintotico in n della probabilità che E non si sia verificato al tempo n, al primo ordine, per a che tende all'infinito.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il punto di partenza dell'elaborato riguarda il modo in cui si giunge, a partire dalla relatività ristretta, a quella generale. Quest'ultima viene poi identificata come una teoria della gravitazione in cui si ottengono le equazioni di campo. Da qui si discute la soluzione delle equazioni di Einstein trovata da Schwarzschild evidenziandone i limiti. Si procede alla estensione di questa soluzione introducendo dapprima le coordinate di Eddington-Finkelstein e poi l'estensione massima data da Kruskal. Infine viene mostrato come è possibile compattificare l'infinito spaziotempo in una regione finita senza alterare la struttura causale. Questo viene fatto tramite delle trasformazioni particolari: le trasformazioni conformi. I diagrammi spaziotemporali che si ottengono dopo la compattificazione conforme sono conosciuti come i digrammi di Penrose e qui si vede come ottenere quelli dello spaziotempo di Minkowski e quelli dello spaziotempo della soluzione di Schwarzschild.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi sono state applicate le tecniche del gruppo di rinormalizzazione funzionale allo studio della teoria quantistica di campo scalare con simmetria O(N) sia in uno spaziotempo piatto (Euclideo) che nel caso di accoppiamento ad un campo gravitazionale nel paradigma dell'asymptotic safety. Nel primo capitolo vengono esposti in breve alcuni concetti basilari della teoria dei campi in uno spazio euclideo a dimensione arbitraria. Nel secondo capitolo si discute estensivamente il metodo di rinormalizzazione funzionale ideato da Wetterich e si fornisce un primo semplice esempio di applicazione, il modello scalare. Nel terzo capitolo è stato studiato in dettaglio il modello O(N) in uno spaziotempo piatto, ricavando analiticamente le equazioni di evoluzione delle quantità rilevanti del modello. Quindi ci si è specializzati sul caso N infinito. Nel quarto capitolo viene iniziata l'analisi delle equazioni di punto fisso nel limite N infinito, a partire dal caso di dimensione anomala nulla e rinormalizzazione della funzione d'onda costante (approssimazione LPA), già studiato in letteratura. Viene poi considerato il caso NLO nella derivative expansion. Nel quinto capitolo si è introdotto l'accoppiamento non minimale con un campo gravitazionale, la cui natura quantistica è considerata a livello di QFT secondo il paradigma di rinormalizzabilità dell'asymptotic safety. Per questo modello si sono ricavate le equazioni di punto fisso per le principali osservabili e se ne è studiato il comportamento per diversi valori di N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesi si occupa, da un punto di vista matematico e filosofico, dello studio dei numeri transfiniti introdotti da Georg Cantor. Vengono introdotti i concetti di numero cardinale ed ordinale, la loro aritmetica ed i principali risultati riguardo al concetto di insieme numerabile. Si discutono le nozioni di infinito potenziale ed attuale e quella di esistenza secondo la concezione di Cantor. Viene infine presentata l'induzione transfinita, una generalizzazione al caso transfinito del principio di induzione matematica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo spazio duale V* di un K-spazio vettoriale V, con K = R, o C, è definito come l'insieme dei funzionali lineari e continui da V in K. Definendo su di esso le operazioni di somma tra funzionali lineari e di prodotto per scalare, V* acquisisce una struttura di K-spazio vettoriale che risulta molto utile. Infatti il suo studio permette di comprendere meglio le caratteristiche dello spazio V. A tal proposito interviene l'argomento che è oggetto dell'elaborato: il Teorema di Rappresentazione di Riesz. Diversi risultati sono raggruppati sotto questo nome, che deriva dal matematico ungherese Frigyes Riesz, e tutti permettono di caratterizzare chiaramente gli elementi del duale dello spazio a cui si riferiscono. Scopo della tesi è quello di presentare il teorema nelle sue varie forme a partire da una delle più elementari: quella relativa a spazi vettoriali finiti. Ripercorrendo via via le sue generalizzazioni si arriverà all'enunciato inerente allo spazio delle funzioni continue f da X in C che si annullano all'infinito, dove X è uno spazio di Hausdorff localmente compatto. Si vedrà inoltre un esempio di applicazione del teorema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi studiamo l'effetto Gibbs. Tale fenomeno si manifesta tramite la presenza di sovra-oscillazioni nei polinomi di Fourier di funzioni che presentano discontinuità di prima specie. La differenza tra il massimo ed il minimo del polinomio di Fourier di tali funzioni, in prossimità di un punto di discontinuità della funzione, è strettamente maggiore del salto della funzione in quel punto, anche per n che tende all'infinito. Per attenuare le sovra-oscillazioni delle somme parziali di Fourier si utilizzano le serie di Fejer e si vede come effettivamente il fenomeno di Gibbs scompaia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.