12 resultados para wastes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Development of glass-ceramics from combination of industrial wastes together with boron mining waste
Resumo:
The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.
Resumo:
The bioproduction of materials and energy from renewable sources (industrial biotechnology) is getting more and more interest in order to improve environmental sustainability of chemical industrial processes and to decrease their dependence from oil. Anaerobic digestion of organic waste matrices (agricultural and industrial wastes, organic fraction of municipal wastes, sewage sludges etc.) may play an important role in the implementation of industrial biotechnology being a well developed strategy in the valorization of complex matrices, as it can mineralize them while producing bioenergy in the form of a biogas rich in methane. In this research the potential of anaerobic digestion in the treatment of polluted sewage sludge was studied by developing three set of anaerobic microcosms with sludges differently contaminated by xenobiotic compounds. The effect of different incubating temperatures and of exogenous carbon and vitamine sources was investigated along with the role of the occurring microbial populations in the pollutant degradation activity. So, while confirming the potential of anaerobic digestion for the biomethanization of sewage sludges, this work proved the effectiveness of this technology in the removal of pollutants too. Moreover, since the degradation of lignocellulose appears to be a limiting step in the anaerobic treatment of a wide range of biomass, the possibility of optimizing anaerobic digestion of lignocellulosic substrates was also studied. To this aim a research was carried out at the BOKUUniversity of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, IFA - Tulln, where mixed cellulolytic cultures were isolated from biogas plants while assessing the metabolic pathway leading to cellulose degradation and verifying their capability to grow on lignocellulose too, proving that on the long term such bacterial cultures could be used as inoculum in order to improve the hydrolysis of lignocellulose in anaerobic digestion plants.
Resumo:
Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.
Resumo:
I rifiuti come oggetti impegnano tutte le istituzioni umane in una lotta di definizione del posto che occupano e quindi del valore che assumono. In tale dinamica la gestione dei rifiuti diventa un fatto sociale totale che coinvolge tutte le istituzioni umane in una lotta di definizione territorializzata. La storia del movimento ambientalista ci mostra come partendo dal disagio nei confronti dell’oggetto si è passati ad un disagio nei confronti delle idee che lo generano. Modernizzazione ecologica e modernizzazione democratica sembrano andare per un certo periodo d’accordo. Nei casi di conflittualità recente, e nello studio di caso approfondito di un piano provinciale della gestione rifiuti, il carattere anticipatore dell’attivismo ambientalista, sta rendendo sempre più costosi e incerti, investimenti e risultati strategici . Anche i principi delle politiche sono messi in discussione. La sostenibilità è da ricercare in una relativizzazione dei principi di policy e degli strumenti tecnici di valutazione (e.g. LCA) verso una maggiore partecipazione di tutti gli attori. Si propone un modello di governance che parta da un coordinamento amministrativo territoriale sulle reti logistiche, quindi un adeguamento geografico degli ATO, e un loro maggior ruolo nella gestione del processo di coordinamento e pianificazione. Azioni queste che devono a loro volta aprirsi ai flussi (ecologici ed economici) e ai loro attori di riferimento: dalle aziende multiutility agli ambientalisti. Infine è necessario un momento di controllo democratico che può avere una funzione arbitrale nei conflitti tra gli attori o di verifica. La ricerca si muove tra la storia e la filosofia, la ricerca empirica e la riflessione teorica. Sono state utilizzate anche tecniche di indagine attiva, come il focus group e l’intervista.
Resumo:
Enzyveba, a partially characterized complex consortium of not-adapted microorganisms developed through prolonged stabilization of organic wastes, was found to markedly intensify the aerobic remediation of aged PAH- and PCB-contaminated soil by acting as a source of exogenous specialized microorganisms and nutrients. Thus, Enzyveba was tested in the bioremediation of Diesel (G1) and HiQ Diesel (G2) contaminated soils under aerobic slurry-phase conditions by means of a chemical, microbiological, ecotoxicological integrated analytical procedure. The addition of Enzyveba resulted in a higher availability of cultivable specialized bacteria and fungi but this resulted in a slight intensification of soil remediation, probably because of the high content of nutrients and specialized microorganisms of the soil. In many cases, the biotreatability of soils impacted by diesel fuel is limited by their poor content of autochthonous pollutant-degrading microorganisms. Thus, bioaugmentation with stable and reproducible cultures with the required broad substrate specificity might be the solution for a successful remediation. Two microbial consortia, ENZ-G1 and ENZ-G2, were enriched from Enzyveba on G1 and G2. Both consortia consist of a similar composition of bacterial and fungal species. They exhibited a comparable and significant biodegradation capability by removing about 90% of 1 g/l of diesel fuel under liquid culture conditions. Given their remarkable biodegradation potential, richness of quite diverse microbes, stability and resistance after cryopreservation at -20 °C for several months, both consortia appear very interesting candidates for bioaugmentation on site. The mycoflora of a soil historically contaminated by high concentration of PCBs was characterised before, at the beginning and at the end of the biotreatment mentioned above. Several mitosporic fungi isolated from soil grew in presence of a mixture of three PCBs congeners when also glucose was provided. This is the first study in which 5 strains of mitosporic species able to biodegrade PCB are reported in the literature.
Resumo:
The Mediterranean diet is rich in healthy substances such as fibres, vitamins and phenols. Often these molecules are lost during food processing. Olive oil milling waste waters, brans, grape skins are some of the most relevant agri-food by-products in the Mediterranean countries. These wastes are still rich in extremely valuable molecules, such as phenolic antioxidants, that have several interesting health promoting properties. Using innovative environmental friendly technologies based in the rational use of enzymatic treatment is possible to obtain from agri-food by-products new ingredients containing antioxidants that can be used as functional ingredients in order to produce fortified foods. These foods, having health protecting/promoting properties, on top of the traditional nutritional properties, are attracting consumer’s attentions due to the increasing awareness on health protection through prevention. The use of these new ingredients in different food preparation was studied in order to evaluate the effects that the food processing might have on the antioxidant fraction, the effect of these ingredient on foods appearances as well as the impact in terms of taste and scent, crucial feature for the acceptability of the final product. Using these new ingredients was possible to produce antioxidant bred, pasta, cheese, cookies and ice-cream. These food products retains very well the antioxidant properties conferred by the added ingredients despite the very different treatments that were performed. The food obtained had a good palatability and in some cases the final product had also a good success on the market.
Resumo:
A fundamental assumption for by-product from winery industy waste-management is their economic and commercial increase in value. High energetic value recovery from winery industry is an attractive economic solution to stimulate new sustainable process. Approach of this work is based about physic and biological treatment with grape stalks and grape marc to increase polysaccharides components of cell wall and energetic availability of this by-products. Grape stalks for example have a high percentage of lignin and cellulose and can’t be used, whitout pretreatment, for an anaerobic digestion process. Our findings show enzymatic and thermo-mechanical pre-treatments in combined application for optimise hydrolytic mechanism on winemaking wastes which represents 0,9 milion ton/year in Italy and on straw, cereal by-products with high lignin content. A screening of specifically industrial enzymatic complex for the hydrolysis lignocellulosic biomass were tested using the principal polysaccharides component of the vegetal cells. Combined thermo-mechanical and enzymatic pretreatment improve substrates conversion in batch test fermentation experiment. The conservation of the grape stalks, at temperature above 0°C, allow the growth of spontaneus fermentation that reduce their polysaccharides content so had investigated anarobic condition of conservation. The other objective of this study was to investigate the capability of a proprietary strain of L.buchneri LN 40177 to enhance the accessibility of fermentable forage constituents during the anaerobic conservation process by releasing the enzyme ferulate esterase. The time sequence study by batch tests showed that the L. buchneri LN-40177 inoculated grape stalk substrate was more readily available in the fermenter. In batch tests with grape stalk, after mechanical treatment, the L. buchneri LN41077 treated substrate yielded on average 70% more biogas per kg/DM. Thermo-mechanical, enzymatic and biological treatment with L. buchneri LN-40177 can increase the biogas production from low fermented biomasses and the consequent their useful in anaerobic biodigesters for agro-bioenergy production.
Resumo:
Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.
Resumo:
Il presente lavoro è incentrato sulla raccolta e l’analisi dell’instrumentum fittile inscriptum – in particolare laterizi, dolia, lucerne, ceramica fine da mensa, anfore e tappi d’anfora - rinvenuto a Modena e nel suo territorio. L’attenzione è stata concentrata sul materiale bollato e, per quanto riguarda le anfore, anche sullo studio degli esemplari recanti tituli picti. Si è proceduto ad una raccolta di tutto il materiale edito, a cui si è aggiunto lo studio di un’ingente quantità di reperti provenienti da due recenti scavi suburbani: quello presso il Parco Novi Sad, che si segnala soprattutto per la ricchezza del materiale anforico, e quello di Viale Reiter, ove sono venuti alla luce numerosi scarti di cottura di lucerne a canale recanti le firme di alcuni dei più noti produttori di tali oggetti nel mondo romano. A ciascuna categoria di instrumentum è stato dedicato un capitolo, corredato di tabelle in cui è stato raccolto tutto il materiale considerato; inoltre, per i reperti del Parco Novi Sad e di Viale Reiter, è stato realizzato un catalogo corredato di riproduzioni grafiche e fotografiche. Per quanto concerne le iscrizioni dipinte, un capitolo è stato dedicato a quelle presenti sulle anforette adriatiche da pesce; quanto ai tituli picti su anfore di morfologia betica per il trasporto di salse di pesce è stato effettuato un confronto con esemplari rinvenuti in due scavi inediti a Parma, che presentano significative analogie col materiale modenese. Dall’analisi dell’instrumentum inscriptum di Mutina, pur consapevoli dei limiti insiti in una ricerca incentrata unicamente su tale tipo di materiale, è emersa un’immagine della colonia, tra la tarda età repubblicana ed il I sec. d.C., congruente con quella delineata dalle fonti letterarie, dall’epigrafia lapidaria e dai rinvenimenti archeologici, ossia di una città di notevole importanza e ricchezza.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
La demolizione idrolitica delle pareti cellulari delle piante tramite enzimi lignocellulosici è quindi uno degli approcci più studiati della valorizzazione di scarti agricoli per il recupero di fitochimici di valore come secondary chemical building block per la chimica industriale. White rot fungi come il Pleurotus ostreatus producono una vasta gamma di enzimi extracellulari che degradano substrati lignocellulosici complessi in sostanze solubili per essere utilizzati come nutrienti. In questo lavoro abbiamo studiato la produzione di diversi tipi di enzimi lignocellulosici quali cellulase, xilanase, pectinase, laccase, perossidase e arylesterase (caffeoilesterase e feruloilesterase), indotte dalla crescita di Pleurotus ostreatus in fermentazione allo stato solido (SSF) di sottoprodotti agroalimentari (graspi d’uva, vinaccioli, lolla di riso, paglia di grano e crusca di grano) come substrati. Negli ultimi anni, SSF ha ricevuto sempre più interesse da parte dei ricercatori, dal momento che diversi studi per produzioni di enzimi, aromi, coloranti e altre sostanze di interesse per l' industria alimentare hanno dimostrato che SSF può dare rendimenti più elevati o migliorare le caratteristiche del prodotto rispetto alla fermentazione sommersa. L’utilizzo dei sottoprodotti agroalimentari come substrati nei processi SSF, fornisce una via alternativa e di valore, alternativa a questi residui altrimenti sotto/o non utilizzati. L'efficienza del processo di fermentazione è stato ulteriormente studiato attraverso trattamenti meccanici di estrusione del substrato , in grado di promuovere il recupero dell’enzima e di aumentare l'attività prodotta. Le attività enzimatiche prodotte dalla fermentazione sono strettamente dipendente della rimozione periodica degli enzimi prodotti. Le diverse matrici vegetali utilizzate hanno presentato diversi fenomeni induttivi delle specifiche attività enzimatiche. I processi SSF hanno dimostrato una buona capacità di produrre enzimi extracellulari in grado di essere utilizzati successivamente nei processi idrolitici di bioraffinazione per la valorizzazione dei prodotti agroalimentari.
Resumo:
La ricerca svolta ha voluto approfondire le possibilità offerte dai sistemi di allevamento dei vigneti a Doppia Cortina (GDC) e a Cordone Libero nei riguardi della meccanizzazione. La ricerca ha considerato gli interventi di potatura invernale, di gestione della chioma (spollonatura, cimatura, defogliazione e pettinatura della doppia cortina) e di vendemmia. Un’operazione particolarmente seguita è stata la potatura invernale realizzando differenti livelli di meccanizzazione. Tutti gli interventi sono stati eseguiti sia manualmente che meccanicamente, confrontando i tempi d’impiego, la qualità del lavoro svolto e gli impegni di manodopera. I risultati sono stati sintetizzati in una valutazione economica, ipotizzando differenti livelli di costo della manodopera impiegata, per ottenere giudizi di convenienza per i singoli interventi e per costruire una valutazione completa e più organica della linea di lavoro proposta. Nelle due forme d’allevamento la meccanizzazione della potatura invernale e della gestione della chioma hanno rispettato pienamente gli obbiettivi tecnici prefissati, dimostrando di essere un valido mezzo per ridurre tempi e costi di gestione. Per questi interventi l’acquisto delle macchine risulta conveniente anche per vigneti di piccola dimensione. Ancor più evidenti in queste due forme d’allevamento sono i vantaggi economici offerti dalla vendemmia meccanica, realizzata con pochi maltrattamenti e perdite di prodotto. La tendenza a meccanizzare integralmente gli interventi di gestione del ciclo colturale della vite, può essere nei prossimi anni un motivo di interesse e di scelta nella realizzazione di nuovi impianti con queste due forme di allevamento, che hanno dimostrato di essere un’espressione completa di sinergia tra macchina e pianta.