Intensificazione di processi biologici per la Bioremediation aerobica di suoli contaminati


Autoria(s): Di Toro, Sara <1977>
Contribuinte(s)

Fava, Fabio

Data(s)

28/06/2011

Resumo

Enzyveba, a partially characterized complex consortium of not-adapted microorganisms developed through prolonged stabilization of organic wastes, was found to markedly intensify the aerobic remediation of aged PAH- and PCB-contaminated soil by acting as a source of exogenous specialized microorganisms and nutrients. Thus, Enzyveba was tested in the bioremediation of Diesel (G1) and HiQ Diesel (G2) contaminated soils under aerobic slurry-phase conditions by means of a chemical, microbiological, ecotoxicological integrated analytical procedure. The addition of Enzyveba resulted in a higher availability of cultivable specialized bacteria and fungi but this resulted in a slight intensification of soil remediation, probably because of the high content of nutrients and specialized microorganisms of the soil. In many cases, the biotreatability of soils impacted by diesel fuel is limited by their poor content of autochthonous pollutant-degrading microorganisms. Thus, bioaugmentation with stable and reproducible cultures with the required broad substrate specificity might be the solution for a successful remediation. Two microbial consortia, ENZ-G1 and ENZ-G2, were enriched from Enzyveba on G1 and G2. Both consortia consist of a similar composition of bacterial and fungal species. They exhibited a comparable and significant biodegradation capability by removing about 90% of 1 g/l of diesel fuel under liquid culture conditions. Given their remarkable biodegradation potential, richness of quite diverse microbes, stability and resistance after cryopreservation at -20 °C for several months, both consortia appear very interesting candidates for bioaugmentation on site. The mycoflora of a soil historically contaminated by high concentration of PCBs was characterised before, at the beginning and at the end of the biotreatment mentioned above. Several mitosporic fungi isolated from soil grew in presence of a mixture of three PCBs congeners when also glucose was provided. This is the first study in which 5 strains of mitosporic species able to biodegrade PCB are reported in the literature.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/4100/1/DiToro_Sara_tesi.pdf

urn:nbn:it:unibo-2865

Di Toro, Sara (2011) Intensificazione di processi biologici per la Bioremediation aerobica di suoli contaminati, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare, molecolare e industriale/cellular, molecular and industrial biology: progetto n. 3 Biocatalisi applicata e microbiologia industriale <http://amsdottorato.unibo.it/view/dottorati/DOT396/>, 23 Ciclo.

Idioma(s)

it

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/4100/

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #CHIM/11 Chimica e biotecnologia delle fermentazioni
Tipo

Doctoral Thesis

PeerReviewed