8 resultados para vector quantization based Gaussian modeling
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.
Resumo:
Motivation An actual issue of great interest, both under a theoretical and an applicative perspective, is the analysis of biological sequences for disclosing the information that they encode. The development of new technologies for genome sequencing in the last years, opened new fundamental problems since huge amounts of biological data still deserve an interpretation. Indeed, the sequencing is only the first step of the genome annotation process that consists in the assignment of biological information to each sequence. Hence given the large amount of available data, in silico methods became useful and necessary in order to extract relevant information from sequences. The availability of data from Genome Projects gave rise to new strategies for tackling the basic problems of computational biology such as the determination of the tridimensional structures of proteins, their biological function and their reciprocal interactions. Results The aim of this work has been the implementation of predictive methods that allow the extraction of information on the properties of genomes and proteins starting from the nucleotide and aminoacidic sequences, by taking advantage of the information provided by the comparison of the genome sequences from different species. In the first part of the work a comprehensive large scale genome comparison of 599 organisms is described. 2,6 million of sequences coming from 551 prokaryotic and 48 eukaryotic genomes were aligned and clustered on the basis of their sequence identity. This procedure led to the identification of classes of proteins that are peculiar to the different groups of organisms. Moreover the adopted similarity threshold produced clusters that are homogeneous on the structural point of view and that can be used for structural annotation of uncharacterized sequences. The second part of the work focuses on the characterization of thermostable proteins and on the development of tools able to predict the thermostability of a protein starting from its sequence. By means of Principal Component Analysis the codon composition of a non redundant database comprising 116 prokaryotic genomes has been analyzed and it has been showed that a cross genomic approach can allow the extraction of common determinants of thermostability at the genome level, leading to an overall accuracy in discriminating thermophilic coding sequences equal to 95%. This result outperform those obtained in previous studies. Moreover, we investigated the effect of multiple mutations on protein thermostability. This issue is of great importance in the field of protein engineering, since thermostable proteins are generally more suitable than their mesostable counterparts in technological applications. A Support Vector Machine based method has been trained to predict if a set of mutations can enhance the thermostability of a given protein sequence. The developed predictor achieves 88% accuracy.
Resumo:
Negli ultimi decenni la Politica Agricola Comune (PAC) è stata sottoposta a diverse revisioni, più o meno programmate, che ne hanno modificato gli obiettivi operativi e gli strumenti per perseguirli. In letteratura economica agraria sono state eseguite diverse ricerche che affrontano analisi ex-ante sui possibili impatti delle riforme politiche, in particolare al disaccoppiamento, riguardo all’allocazione dei terreni alle diverse colture e all’adozione di tecniche di coltivazione più efficienti. Ma tale argomento, nonostante sia di grande importanza, non è stato finora affrontato come altri temi del mondo agricolo. Le principali lacune si riscontrano infatti nella carenza di analisi ex-ante, di modelli che includano le preferenze e le aspettative degli agricoltori. Questo studio valuta le scelte di investimento in terreno di un’azienda agricola di fronte a possibili scenari PAC post-2013, in condizioni di incertezza circa le specifiche condizioni in cui ciascuno scenario verrebbe a verificarsi. L’obiettivo è di ottenere indicazioni utili in termini di comprensione delle scelte di investimento dell’agricoltore in presenza di incertezza sul futuro. L’elemento maggiormente innovativo della ricerca consiste nell’applicazione di un approccio real options e nell’interazione tra la presenza di diversi scenari sul futuro del settore agricolo post-2013, e la componente di incertezza che incide e gravita su di essi. La metodologia adottata nel seguente lavoro si basa sulla modellizzazione di un’azienda agricola, in cui viene simulato il comportamento dell’azienda agricola in reazione alle riforme della PAC e alla variazione dei prezzi dei prodotti in presenza di incertezza. Mediante un modello di Real Option viene valutata la scelta della tempistica ottimale per investire nell’acquisto di terreno (caratterizzato da incertezza e irreversibilità). Dai risultati emerge come in presenza di incertezza all’agricoltore convenga rimandare la decisione a dopo il 2013 e in base alle maggiori informazioni disponibili eseguire l’investimento solo in presenza di condizioni favorevoli. La variazione dei prezzi dei prodotti influenza le scelte più dell’incertezza dei contributi PAC. Il Real Option sembra interpretare meglio il comportamento dell’agricoltore rispetto all’approccio classico del Net Present Value.
Resumo:
In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.
Resumo:
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment has given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Vehicles exist with various missions; super sport cars usually aim to reach peak performance and to guarantee a great driving experience to the driver, but great attention must also be paid to fuel consumption. According to the vehicle mission, hybrid vehicles can differ in the powertrain configuration and the choice of the energy storage system. Lamborghini has recently invested in the development of hybrid super sport cars, due to performance and comfort reasons, with the possibility to reduce fuel consumption. This research activity has been conducted as a joint collaboration between the University of Bologna and the sportscar manufacturer, to analyze the impact of innovative energy storage solutions on the hybrid vehicle performance. Capacitors have been studied and modeled to analyze the pros and cons of such solution with respect to batteries. To this aim, a full simulation environment has been developed and validated to provide a concept design tool capable of precise results and able to foresee the longitudinal performance on regulated emission cycles and real driving conditions, with a focus on fuel consumption. In addition, the target of the research activity is to deepen the study of hybrid electric super sports cars in the concept development phase, focusing on defining the control strategies and the energy storage system’s technology that best suits the needs of the vehicles. This dissertation covers the key steps that have been carried out in the research project.
Resumo:
The coastal ocean is a complex environment with extremely dynamic processes that require a high-resolution and cross-scale modeling approach in which all hydrodynamic fields and scales are considered integral parts of the overall system. In the last decade, unstructured-grid models have been used to advance in seamless modeling between scales. On the other hand, the data assimilation methodologies to improve the unstructured-grid models in the coastal seas have been developed only recently and need significant advancements. Here, we link the unstructured-grid ocean modeling to the variational data assimilation methods. In particular, we show results from the modeling system SANIFS based on SHYFEM fully-baroclinic unstructured-grid model interfaced with OceanVar, a state-of-art variational data assimilation scheme adopted for several systems based on a structured grid. OceanVar implements a 3DVar DA scheme. The combination of three linear operators models the background error covariance matrix. The vertical part is represented using multivariate EOFs for temperature, salinity, and sea level anomaly. The horizontal part is assumed to be Gaussian isotropic and is modeled using a first-order recursive filter algorithm designed for structured and regular grids. Here we introduced a novel recursive filter algorithm for unstructured grids. A local hydrostatic adjustment scheme models the rapidly evolving part of the background error covariance. We designed two data assimilation experiments using SANIFS implementation interfaced with OceanVar over the period 2017-2018, one with only temperature and salinity assimilation by Argo profiles and the second also including sea level anomaly. The results showed a successful implementation of the approach and the added value of the assimilation for the active tracer fields. While looking at the broad basin, no significant improvements are highlighted for the sea level, requiring future investigations. Furthermore, a Machine Learning methodology based on an LSTM network has been used to predict the model SST increments.
Resumo:
Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.