8 resultados para soft agar overlay
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Scopo: L’obiettivo del presente programma di studio è stato quello di identificare e validare nuovi possibili bersagli terapeutici per l’osteosarcoma (OS) partendo dall’analisi del chinoma umano. Risultati: L’analisi del profilo di espressione genica ottenuta su 21 campioni clinici di OS ad alto grado di malignità ha permesso di selezionare le seguenti chinasi di possibile rilevanza biologica per l’OS: AURK-A, AURK-B, CDK2, PIK3CA, PLK-1. Le chinasi selezionate sono state validate tramite RNA interference. Successivamente è stata valutata l’efficacia dei relativi inibitori specifici: VX-680 e ZM-447439 inibitori delle Aurora-chinasi, Roscovitina di CDK2 e NMS1 di PLK-1, già inclusi in studi clinici. In termini d’inibizione della crescita cellulare le linee sono risultate maggiomente sensibili ai farmaci VX-680 e NMS1. E’ stata osservata una minor sensibilità ai farmaci VX-680, ZM447439 e NMS1 nelle linee doxorubicina(DX)-resistenti (caratterizzate da elevati livelli di espressione di ABCB1), indicando questi farmaci come potenziali substrati di ABCB1. La Roscovitina, nonostante i valori di IC50 elevati, non sembrerebbe substrato di ABCB1. La validazione preclinica di VX-680 e ZM447439 è stata completata. La forte inibizione della crescita è causata da endoreduplicazione per mancata citodieresi con conseguente formazione di una popolazione iperploide e apoptosi. Inoltre, VX-680 inibisce la motilità e la capacità di formare colonie. Esperimenti di associazione farmacologica mostrano che VX-680 interagisce positivamente con tutti i chemioterapici convenzionali impiegati nel trattamento dell’OS. NMS-1 produce interazioni positive con la DX in linee cellulari DX-resistenti, probabilmente grazie all’effetto revertante esercitato su ABCB1. La Roscovitina produce interazioni positive con CDDP e DX nelle varianti resistenti, effetto probbilmente dovuto al ruolo di CDK2 nei meccanismi di riparo del DNA. Conclusioni: L’analisi in vitro dell’attività degli inibitori ha permesso di identificare VX-680 come nuovo farmaco di potenziale interesse clinico, soprattutto in virtù delle sue interazioni sinergiche con i chemioterapici di uso convenzionale nel trattamento dell’osteosarcoma.
Resumo:
Glycosyltransferases ST6GAL1 and B4GALNT2 (and their cognate antigens Sia6LacNAc and Sda, respectively) are associated with colorectal cancer (CRC) but it is not fully clear their biological and clinical significance. We explored the clinical relevance of both glycosyltransferases by interrogating The Cancer Genome Atlas (TCGA) database while the phenotypic/transcriptomic effects of ST6GAL1/B4GALNT2 overexpression were studied in genetically modified CRC cell lines. Transcriptomic data from CRC patients in TCGA database suggested a moderate impact of ST6GAL1 on CRC progression, although it was not possible to define a clear role for this glycosyltransferase. Transcriptomic analysis of ST6GAL1-transduced cell lines revealed a much deeper effect of ST6GAL1 on gene expression in SW948 than in SW48. The overexpression of ST6GAL1 induced opposite effects on soft agar growth and wound healing in both cell lines. These results indicate that the impact of a cancer-associated glycosyltransferase change on phenotype/transcriptome can be extremely variable, depending on the molecular context of the tumor cell. On the contrary, transcriptomic analysis of B4GALNT2-modified cell lines together with TCGA database survey demonstrated a strong impact of B4GALNT2 on the transcriptional activity of CRC cells, in particular its association with a better prognosis. We suggest an anti-tumoral role of B4GALNT2 in CRC. We also investigated the glycan changes related to ST6GAL1/B4GALNT2 expression in a small cohort of tissues/plasma as well as the N-glycomic profile of CRC, normal and polyp tissues. We found an increase of ST6GAL1 activity in CRC and inflammatory bowel disease plasma samples comparing with plasma from healthy donors. A different Sda protein carrier pattern was observed between healthy donors and CRC plasma samples. β-arrestin 1 is a possible candidate as Sda carrier protein in plasma samples although future validation studies are needed. The alterations found in the N-glycan pattern highlight the importance of N-glycome as a molecular signature in cancer.
Resumo:
In colorectal cancer (CRC), two carbohydrate structures are modulated: the Sda antigen, synthesized by B4GALNT2, and sLex antigen, mainly synthesized by FUT6. sLex antigen is often overexpressed and associated with worse prognosis; B4GALNT2/Sda antigen are dramatically downregulated but their role in tumor progression and development is not fully clear. TCGA interrogation revealed a dramatic down-regulation of B4GALNT2 mRNA in CRC, compared with normal samples. Patients with higher B4GALNT2 mRNA in CRC samples displayed longer survival. Yet, methylation and miRNA expression play a relevant role in B4GALNT2 downregulation in CRC. To clarify the mechanisms linking the B4GALNT2/Sda expression level to CRC phenotype, three different CRC cell lines were modified to express B4GALNT2: LS174T cell line, in which the constitutively expressed sLex antigen was partially replaced by Sda; SW480/SW620 pair, both lacking Sda and sLex antigens. In LS174T cells, the expression of B4GALNT2 reduced the ability to grow in poor adherence conditions and the expression of ALDH, a stemness marker. In SW620 cells, B4GALNT2 expression impacted on the main aspects of malignancy. In SW480 cells the expression of B4GALNT2 left unchanged the proliferation rate and the wound healing ability. To clarify the impact of sLex on CRC phenotype, the SW480/SW620 pair were permanently transfected to express FUT6 cDNA. In both cell lines, overexpression of FUT6/sLex boosted the clonogenic ability in standard growth conditions. Conversely, the growth in soft agar and the capacity to close a wound were enhanced only in SW620 cells. Transcriptome analysis of CRC cell lines transfected either with B4GALNT2 or FUT6 showed a relevant impact of both enzymes on gene expression modulation. Overall, current data may help to personalize therapies for CRC patients according to the B4GALNT2 levels and support a causal effect of this glycosyltransferase on reducing malignancy independently of sLex inhibition.
Resumo:
We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.
Resumo:
In 3D human movement analysis performed using stereophotogrammetric systems and skin markers, bone pose can only be estimated in an indirect fashion. During a movement, soft tissue deformations make the markers move with respect to the underlying bone generating soft tissue artefact (STA). STA has devastating effects on bone pose estimation and its compensation remains an open question. The aim of this PhD thesis was to contribute to the solution of this crucial issue. Modelling STA using measurable trial-specific variables is a fundamental prerequisite for its removal from marker trajectories. Two STA model architectures are proposed. Initially, a thigh marker-level artefact model is presented. STA was modelled as a linear combination of joint angles involved in the movement. This model was calibrated using ex-vivo and in-vivo STA invasive measures. The considerable number of model parameters led to defining STA approximations. Three definitions were proposed to represent STA as a series of modes: individual marker displacements, marker-cluster geometrical transformations (MCGT), and skin envelope shape variations. Modes were selected using two criteria: one based on modal energy and another on the selection of modes chosen a priori. The MCGT allows to select either rigid or non-rigid STA components. It was also empirically demonstrated that only the rigid component affects joint kinematics, regardless of the non-rigid amplitude. Therefore, a model of thigh and shank STA rigid component at cluster-level was then defined. An acceptable trade-off between STA compensation effectiveness and number of parameters can be obtained, improving joint kinematics accuracy. The obtained results lead to two main potential applications: the proposed models can generate realistic STAs for simulation purposes to compare different skeletal kinematics estimators; and, more importantly, focusing only on the STA rigid component, the model attains a satisfactory STA reconstruction with less parameters, facilitating its incorporation in an pose estimator.
Resumo:
In the search to understand the interaction between cells and their underlying substrates, life sciences are beginning to incorporate micro and nano-technology based tools to probe, measure and improve cellular behavior. In this frame, patterned surfaces provide a platform for highly defined cellular interactions and, in perspective, they offer unique advantages for artificial implants. For these reasons, functionalized materials have recently become a central topic in tissue engineering. Nanotechnology, with its rich toolbox of techniques, can be the leading actor in the materials patterning field. Laser assisted methods, conventional and un-conventional lithography and other patterning techniques, allow the fabrication of functional supports with tunable properties, either physically, or topographically and chemically. Among them, soft lithography provides an effective (and low cost) strategy for manufacturing micro and nanostructures. The main focus of this work is the use of different fabrication approaches aiming at a precise control of cell behavior, adhesion, proliferation and differentiation, through chemically and spatially designed surfaces.
Resumo:
This dissertation consists of three papers. The first paper "Managing the Workload: an Experiment on Individual Decision Making and Performance" experimentally investigates how decision-making in workload management affects individual performance. I designed a laboratory experiment in order to exogenously manipulate the schedule of work faced by each subject and to identify its impact on final performance. Through the mouse click-tracking technique, I also collected interesting behavioral measures on organizational skills. I found that a non-negligible share of individuals performs better under externally imposed schedules than in the unconstrained case. However, such constraints are detrimental for those good in self-organizing. The second chapter, "On the allocation of effort with multiple tasks and piecewise monotonic hazard function", tests the optimality of a scheduling model, proposed in a different literature, for the decisional problem faced in the experiment. Under specific assumptions, I find that such model identifies what would be the optimal scheduling of the tasks in the Admission Test. The third paper "The Effects of Scholarships and Tuition Fees Discounts on Students' Performances: Which Monetary Incentives work Better?" explores how different levels of monetary incentives affect the achievement of students in tertiary education. I used a Regression Discontinuity Design to exploit the assignment of different monetary incentives, to study the effects of such liquidity provision on performance outcomes, ceteris paribus. The results show that a monetary increase in the scholarships generates no effect on performance since the achievements of the recipients are all centered near the requirements for non-returning the benefit. Secondly, students, who are actually paying some share of the total cost of college attendance, surprisingly, perform better than those whose cost is completely subsidized. A lower benefit, relatively to a higher aid, it motivates students to finish early and not to suffer the extra cost of a delayed graduation.