4 resultados para sleep-related disorders

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Blood pressure (BP) physiologically has higher and lower values during the active and rest period, respectively. Subjects failing to show the appropriate BP decrease (10-20%) on passing form diurnal activity to nocturnal rest and sleep have increased risk of target organ damage at the cardiac, vascular and cerebrovascular levels. Hypocretin (HCRT) releasing neurons, mainly located in the lateral hypothalamus, project widely to the central nervous system. Thus HCRT neurons are involved in several autonomic functions, including BP regulation. HCRT neurons also play a key role in wake-sleep cycle regulation, the lack of which becomes evident in HCRT-deficient narcoleptic patients. I investigated whether chronic lack of HCRT signaling alters BP during sleep in mouse models of narcolepsy. Methods. The main study was performed on HCRT-ataxin3 transgenic mice (TG) with selective post-natal ablation of HCRT neurons, HCRT gene knockout mice (KO) with preserved HCRT neurons, and Wild-Type control mice (WT) with identical genetic background. Experiments where replicated on TG and WT mice with hybrid genetic background (hTG and hWT, respectively). Mice were implanted with a telemetric pressure transducer (TA11PA-C10, DSI) and electrodes for discriminating wakefulness (W), rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Signals were recorded for 3 days. Mean BP values were computed in each wake-sleep state and analyzed by ANOVA and t-test with significance at p<0.05. Results. The decrease in BP between either NREMS or REMS and W was significantly blunted in TG and KO with respect to WT as well as in hTG with respect to hWT. Conclusions. Independently from the genetic background, chronic HCRT deficiency leads to a decreased BP difference between W and sleep potentially adverse in narcoleptic subjects. These data suggest that HCRT play an important role in the sleep-dependent cardiovascular control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poiché la diagnosi differenziale degli episodi parossistici notturni è affidata alla VEPSG, tenendo conto dei limiti di tale metodica, il progetto attuale ha lo scopo di definire la resa diagnostica di strumenti alternativi alla VEPSG: anamnesi, home-made video ed EEG intercritico. Sono stati reclutati consecutivamente 13 pazienti, afferiti al nostro Dipartimento per episodi parossistici notturni. Ciascun paziente è stato sottoposto ad un protocollo diagnostico standardizzato. A 5 Medici Esperti in Epilessia e Medicina del Sonno è stato chiesto di formulare un orientamento diagnostico sulla base di anamnesi, EEG intercritico, home-made video e VEPSG. Attraverso l’elaborazione degli orientamenti diagnostici è stata calcolata la resa diagnostica delle procedure esaminate, a confronto con la VEPSG, attraverso il concetto di “accuratezza diagnostica”. Per 6 pazienti è stato possibile porre una diagnosi di Epilessia Frontale Notturna, per 2 di parasonnia, in 5 la diagnosi è rimasta dubbia. L’accuratezza diagnostica di ciascuna procedura è risultata moderata, con lievi differenze tra le diverse procedure (61.5% anamnesi; 66% home-made video; 69,2 % EEG intercritico). E’ essenziale migliorare ulteriormente l’accuratezza diagnostica di anamnesi, EEG intercritico ed home-made video, che possono risultare cruciali nei casi in cui la diagnosi non è certa o quando la VEPSG non è disponibile.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synucleinopathies are a group of neurodegenerative diseases characterized by tissue deposition of insoluble aggregates of the protein α-synuclein. Currently, the clinical diagnosis of these diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), is very challenging, especially at an early disease stage, due to the heterogeneous and often non-specific clinical manifestations. Therefore, identifying specific biomarkers to aid the diagnosis and improve the clinical management of patients with these disorders represents a primary goal in the field. Pursuing this aim, we applied the α-Syn Real-Time Quaking-Induced Conversion (RT-QuIC), an ultrasensitive technique able to detect minute amounts of amyloidogenic proteins, to a large cohort of 953 CSF samples from clinically well-characterized (“clinical” group), or neuropathologically verified (“NP” group) patients with parkinsonism or dementia. Of significance, we also studied patients with prodromal synucleinopathies (“prodromal” group), such as pure autonomic failure (PAF) (n = 28), isolated REM sleep behavior disorder (iRBD) (n = 18), and mild cognitive impairment due to probable Lewy body (LB) disease (MCI-LB) (n = 81). Our findings show that α-syn RT-QuIC can accurately detect α-Syn seeding activity across the whole spectrum of LB-related disorders (LBD), exhibiting a mean sensitivity of 95.2% in the “clinical” and “NP” group, while ranging between 89.3% (PAF) and 100% (RBD) in the “prodromal group”. Moreover, we observed 95.1% sensitivity and 96.6% specificity in the distinction between MCI-LB patients and cognitively unimpaired controls, demonstrating the solid diagnostic potential of α-Syn RT-QuIC in the early phase of the disease. Finally, 13.3% of MCI-AD patients also had a positive test, suggesting an underlying LB co-pathology. This work demonstrated that α-Syn RT-QuIC is an efficient assay for accurate and early diagnosis of LBD, which should be implemented for clinical management and recruitment for clinical trials in memory clinics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.