15 resultados para shape and surface modeling

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is divided in three chapters. In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model. In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA. In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Powder Bed Fusion (LPBF) permits the manufacturing of parts with optimized geometry, enabling lightweight design of mechanical components in aerospace and automotive and the production of tools with conformal cooling channels. In order to produce parts with high strength-to-weight ratio, high-strength steels are required. To date, the most diffused high-strength steels for LPBF are hot-work tool steels, maraging and precipitation-hardening stainless steels, featuring different composition, feasibility and properties. Moreover, LPBF parts usually require a proper heat treatment and surface finishing, to develop the desired properties and reduce the high roughness resulting from LPBF. The present PhD thesis investigates the effect of different heat treatments and surface finishing on the microstructure and mechanical properties of a hot-work tool steel and a precipitation-hardening stainless steel manufactured via LPBF. The bibliographic section focuses on the main aspects of LPBF, hot-work tool steels and precipitation-hardening stainless steels. The experimental section is divided in two parts. Part A addresses the effect of different heat treatments and surface finishing on the microstructure, hardness, tensile and fatigue behaviour of a LPBF manufactured hot-work tool steel, to evaluate its feasibility for automotive and racing components. Results indicated the possibility to achieve high hardness and strength, comparable to the conventionally produced steel, but a great sensitivity of fatigue strength on defects and surface roughness resulting from LPBF. Part B investigates the effect of different heat treatments on the microstructure, hardness, tensile and notch-impact behaviour of a LPBF produced precipitation-hardening stainless steel, to assess its feasibility for tooling applications. Results indicated the possibility to achieve high hardness and strength also through a simple Direct Aging, enabling heat treatment simplification by exploiting the microstructural features resulting from LPBF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of Maier­Saupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystal­smectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CB­vacuum, finding a homeotropic orientation of the nematic at this interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of 6XXX aluminum alloys deeply affects mechanical, crash, corrosion and aesthetic properties of extruded profiles. Unfortunately, grain structure evolution during manufacturing processes is a complex phenomenon because several process and material parameters such as alloy chemical composition, temperature, extrusion speed, tools geometries, quenching and thermal treatment parameters affect the grain evolution during the manufacturing process. The aim of the present PhD thesis was the analysis of the recrystallization kinetics during the hot extrusion of 6XXX aluminum alloys and the development of reliable recrystallization models to be used in FEM codes for the microstructure prediction at a die design stage. Experimental activities have been carried out in order to acquire data for the recrystallization models development, validation and also to investigate the effect of process parameters and die design on the microstructure of the final component. The experimental campaign reported in this thesis involved the extrusion of AA6063, AA6060 and AA6082 profiles with different process parameters in order to provide a reliable amount of data for the models validation. A particular focus was made to investigate the PCG defect evolution during the extrusion of medium-strength alloys such as AA6082. Several die designs and process conditions were analysed in order to understand the influence of each of them on the recrystallization behaviour of the investigated alloy. From the numerical point of view, innovative models for the microstructure prediction were developed and validated over the extrusion of industrial-scale profiles with complex geometries, showing a good matching in terms of the grain size and surface recrystallization prediction. The achieved results suggest the reliability of the developed models and their application in the industrial field for process and material properties optimization at a die-design stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates interactive scene reconstruction and understanding using RGB-D data only. Indeed, we believe that depth cameras will still be in the near future a cheap and low-power 3D sensing alternative suitable for mobile devices too. Therefore, our contributions build on top of state-of-the-art approaches to achieve advances in three main challenging scenarios, namely mobile mapping, large scale surface reconstruction and semantic modeling. First, we will describe an effective approach dealing with Simultaneous Localization And Mapping (SLAM) on platforms with limited resources, such as a tablet device. Unlike previous methods, dense reconstruction is achieved by reprojection of RGB-D frames, while local consistency is maintained by deploying relative bundle adjustment principles. We will show quantitative results comparing our technique to the state-of-the-art as well as detailed reconstruction of various environments ranging from rooms to small apartments. Then, we will address large scale surface modeling from depth maps exploiting parallel GPU computing. We will develop a real-time camera tracking method based on the popular KinectFusion system and an online surface alignment technique capable of counteracting drift errors and closing small loops. We will show very high quality meshes outperforming existing methods on publicly available datasets as well as on data recorded with our RGB-D camera even in complete darkness. Finally, we will move to our Semantic Bundle Adjustment framework to effectively combine object detection and SLAM in a unified system. Though the mathematical framework we will describe does not restrict to a particular sensing technology, in the experimental section we will refer, again, only to RGB-D sensing. We will discuss successful implementations of our algorithm showing the benefit of a joint object detection, camera tracking and environment mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic activities and climatic processes heavily influence surface water resources by causing their progressive depletion, which in turn affects both societies and the environment. Therefore, there is an urgent need to understand the contribution of human and climatic dynamics on the variation of surface water availability. Here, this investigation is performed on the contiguous United States (CONUS) using remotely-sensed data. Three anthropogenic (i.e., urban area, population, and irrigation) and two climatic factors (i.e., precipitation and temperature) were selected as potential drivers of changes in surface water extent and the overlap between the increase or decrease in these drivers and the variation of surface water was examined. Most of the river basins experienced a surface water gain due to precipitation increase (eastern CONUS), and a reduction of irrigated land (western CONUS). River basins of the arid southwestern region and some river basins of the northeastern area encountered a surface water loss, essentially induced by population growth, along with a precipitation deficit and a general expansion of irrigated land. To further inspect the role of population growth and urbanization on surface water loss, the spatial interaction between human settlements and surface water depletion was examined by evaluating the frequency of surface water loss as a function of distance from urban areas. The decline of the observed frequency was successfully reproduced with an exponential distance-decay model, proving that surface water losses are more concentrated in the proximity of cities. Climatic conditions influenced this pattern, with more widely distributed losses in arid regions compared to temperate and continental areas. The results presented in this Thesis provide an improved understanding of the effects of anthropogenic and climatic dynamics on surface water availability, which could be integrated in the definition of sustainable strategies for urbanization, water management, and surface water restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional chromatographic columns are packed with porous beads by the universally employed slurry-packing method. The lack of precise control of the particle size distribution, shape and position inside the column have dramatic effects on the separation efficiency. In the first part the thesis an ordered, three-dimensional, pillar-array structure was designed by a CAD software. Several columns, characterized by different fluid distributors and bed length, were produced by a stereolithographic 3D printer and compared in terms of pressure drop and height equivalent to a theroretical plate (HETP). To prevent the release of unwanted substances and to provide a surface for immobilizing a ligand, pillars were coated with one or more of the following materials: titanium dioxide, nanofibrillated cellulose (NFC) and polystyrene. The external NFC layer was functionalized with Cibacron Blue and the dynamic binding capacity of the column was measured by performing three chromatographic cycles, using bovine serum albumin (BSA) as target molecule. The second part of the thesis deals with Covid-19 pandemic related research activities. In early 2020, due to the pandemic outbreak, surgical face masks became an essential non-pharmaceutical intervention to limit the spread. To address the consequent shortage and to support the reconversion of the Italian industry, in late March 2020 a multidisciplinary group of the University of Bologna created the first Italian laboratory able to perform all the tests required for the evaluation and certification of surgical masks. More than 1200 tests were performed on about 350 prototypes, according to the standard EN 14683:2019. The results were analyzed to define the best material properties and masks composition for the production of masks with excellent efficiency. To optimize the usage of surgical masks and to reduce their environmental burden, the variation of their performance over time of usage were investigated as to determine the maximum lifetime.