11 resultados para performance evaluation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date the hospital radiological workflow is completing a transition from analog to digital technology. Since the X-rays digital detection technologies have become mature, hospitals are trading on the natural devices turnover to replace the conventional screen film devices with digital ones. The transition process is complex and involves not just the equipment replacement but also new arrangements for image transmission, display (and reporting) and storage. This work is focused on 2D digital detector’s characterization with a concern to specific clinical application; the systems features linked to the image quality are analyzed to assess the clinical performances, the conversion efficiency, and the minimum dose necessary to get an acceptable image. The first section overviews the digital detector technologies focusing on the recent and promising technological developments. The second section contains a description of the characterization methods considered in this thesis categorized in physical, psychophysical and clinical; theory, models and procedures are described as well. The third section contains a set of characterizations performed on new equipments that appears to be some of the most advanced technologies available to date. The fourth section deals with some procedures and schemes employed for quality assurance programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study is aimed to calculate an innovative numerical index for bit performance evaluation called Bit Index (BI), applied on a new type of bit database named Formation Drillability Catalogue (FDC). A dedicated research programme (developed by Eni E&P and the University of Bologna) studied a drilling model for bit performance evaluation named BI, derived from data recorded while drilling (bit records, master log, wireline log, etc.) and dull bit evaluation. This index is calculated with data collected inside the FDC, a novel classification of Italian formations aimed to the geotechnical and geomechanical characterization and subdivisions of the formations, called Minimum Interval (MI). FDC was conceived and prepared at Eni E&P Div., and contains a large number of significant drilling parameters. Five wells have been identified inside the FDC and have been tested for bit performance evaluation. The values of BI are calculated for each bit run and are compared with the values of the cost per metre. The case study analyzes bits of the same type, diameters and run in the same formation. The BI methodology implemented on MI classification of FDC can improve consistently the bit performances evaluation, and it helps to identify the best performer bits. Moreover, FDC turned out to be functional to BI, since it discloses and organizes formation details that are not easily detectable or usable from bit records or master logs, allowing for targeted bit performance evaluations. At this stage of development, the BI methodology proved to be economic and reliable. The quality of bit performance analysis obtained with BI seems also more effective than the traditional “quick look” analysis, performed on bit records, or on the pure cost per metre evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, third generation networks are consolidated realities, and user expectations on new applications and services are becoming higher and higher. Therefore, new systems and technologies are necessary to move towards the market needs and the user requirements. This has driven the development of fourth generation networks. ”Wireless network for the fourth generation” is the expression used to describe the next step in wireless communications. There is no formal definition for what these fourth generation networks are; however, we can say that the next generation networks will be based on the coexistence of heterogeneous networks, on the integration with the existing radio access network (e.g. GPRS, UMTS, WIFI, ...) and, in particular, on new emerging architectures that are obtaining more and more relevance, as Wireless Ad Hoc and Sensor Networks (WASN). Thanks to their characteristics, fourth generation wireless systems will be able to offer custom-made solutions and applications personalized according to the user requirements; they will offer all types of services at an affordable cost, and solutions characterized by flexibility, scalability and reconfigurability. This PhD’s work has been focused on WASNs, autoconfiguring networks which are not based on a fixed infrastructure, but are characterized by being infrastructure less, where devices have to automatically generate the network in the initial phase, and maintain it through reconfiguration procedures (if nodes’ mobility, or energy drain, etc..., cause disconnections). The main part of the PhD activity has been focused on an analytical study on connectivity models for wireless ad hoc and sensor networks, nevertheless a small part of my work was experimental. Anyway, both the theoretical and experimental activities have had a common aim, related to the performance evaluation of WASNs. Concerning the theoretical analysis, the objective of the connectivity studies has been the evaluation of models for the interference estimation. This is due to the fact that interference is the most important performance degradation cause in WASNs. As a consequence, is very important to find an accurate model that allows its investigation, and I’ve tried to obtain a model the most realistic and general as possible, in particular for the evaluation of the interference coming from bounded interfering areas (i.e. a WiFi hot spot, a wireless covered research laboratory, ...). On the other hand, the experimental activity has led to Throughput and Packet Error Rare measurements on a real IEEE802.15.4 Wireless Sensor Network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sports biomechanics describes human movement from a performance enhancement and an injury reduction perspective. In this respect, the purpose of sports scientists is to support coaches and physicians with reliable information about athletes’ technique. The lack of methods allowing for in-field athlete evaluation as well as for accurate joint force estimates represents, to date, the main limitation to this purpose. The investigations illustrated in the present thesis aimed at providing a contribution towards the development of the above mentioned methods. Two complementary approaches were adopted: a Low Resolution Approach – related to performance assessment – where the use of wearable inertial measurement units is exploited during different phases of sprint running, and a High Resolution Approach – related to joint kinetics estimate for injury prevention – where subject-specific, non-rigid constraints for knee joint kinematic modelling used in multi-body optimization techniques are defined. Results obtained using the Low Resolution Approach indicated that, due to their portability and inexpensiveness, inertial measurement systems are a valid alternative to laboratory-based instrumentation for in-field performance evaluation of sprint running. Using acceleration and angular velocity data, the following quantities were estimated: trunk inclination and angular velocity, instantaneous horizontal velocity and displacement of a point approximating the centre of mass, and stride and support phase durations. As concerns the High Resolution Approach, results indicated that the length of the anterior cruciate and lateral collateral ligaments decreased, while that of the deep bundle of the medial collateral ligament increased significantly during flexion. Variations of the posterior cruciate and the superficial bundle of the medial collateral ligament lengths were concealed by the experimental indeterminacy. A mathematical model was provided that allowed the estimate of subject-specific ligament lengths as a function of knee flexion and that can be integrated in a multi-body optimization procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progress in miniaturization of electronic components and design of wireless systems paved the way towards ubiquitous and pervasive communications, enabling anywhere and anytime connectivity. Wireless devices present on, inside, around the human body are becoming commonly used, leading to the class of body-centric communications. The presence of the body with all its peculiar characteristics has to be properly taken into account in the development and design of wireless networks in this context. This thesis addresses various aspects of body-centric communications, with the aim of investigating network performance achievable in different scenarios. The main original contributions pertain to the performance evaluation for Wireless Body Area Networks (WBANs) at the Medium Access Control layer: the application of Link Adaptation to these networks is proposed, Carrier Sense Multiple Access with Collision Avoidance algorithms used for WBAN are extensively investigated, coexistence with other wireless systems is examined. Then, an analytical model for interference in wireless access network is developed, which can be applied to the study of communication between devices located on humans and fixed nodes of an external infrastructure. Finally, results on experimental activities regarding the investigation of human mobility and sociality are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.