3 resultados para mechanical pre-dewatering
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.
Resumo:
A fundamental assumption for by-product from winery industy waste-management is their economic and commercial increase in value. High energetic value recovery from winery industry is an attractive economic solution to stimulate new sustainable process. Approach of this work is based about physic and biological treatment with grape stalks and grape marc to increase polysaccharides components of cell wall and energetic availability of this by-products. Grape stalks for example have a high percentage of lignin and cellulose and can’t be used, whitout pretreatment, for an anaerobic digestion process. Our findings show enzymatic and thermo-mechanical pre-treatments in combined application for optimise hydrolytic mechanism on winemaking wastes which represents 0,9 milion ton/year in Italy and on straw, cereal by-products with high lignin content. A screening of specifically industrial enzymatic complex for the hydrolysis lignocellulosic biomass were tested using the principal polysaccharides component of the vegetal cells. Combined thermo-mechanical and enzymatic pretreatment improve substrates conversion in batch test fermentation experiment. The conservation of the grape stalks, at temperature above 0°C, allow the growth of spontaneus fermentation that reduce their polysaccharides content so had investigated anarobic condition of conservation. The other objective of this study was to investigate the capability of a proprietary strain of L.buchneri LN 40177 to enhance the accessibility of fermentable forage constituents during the anaerobic conservation process by releasing the enzyme ferulate esterase. The time sequence study by batch tests showed that the L. buchneri LN-40177 inoculated grape stalk substrate was more readily available in the fermenter. In batch tests with grape stalk, after mechanical treatment, the L. buchneri LN41077 treated substrate yielded on average 70% more biogas per kg/DM. Thermo-mechanical, enzymatic and biological treatment with L. buchneri LN-40177 can increase the biogas production from low fermented biomasses and the consequent their useful in anaerobic biodigesters for agro-bioenergy production.
Resumo:
A major weakness of composite materials is that low-velocity impact, introduced accidentally during manufacture, operation or maintenance of the aircraft, may result in delaminations between the plies. Therefore, the first part of this study is focused on mechanics of curved laminates under impact. For this aim, the effect of preloading on impact response of curved composite laminates is considered. By applying the preload, the stress through the thickness and curvature of the laminates increased. The results showed that all impact parameters are varied significantly. For understanding the contribution rate of preloading and pre-stress on the obtained results another test is designed. The interesting phenomenon is that the preloading can decrease the damaged area when the curvature of the both specimens is the same. Finally the effect of curvature type, concave and convex, is investigated under impact loading. In the second part, a new composition of nanofibrous mats are developed to improve the efficiency of curved laminates under impact loading. Therefore, at first some fracture tests are conducted to consider the effect of Nylon 6,6, PCL, and their mixture on mode I and mode II fracture toughness. For this goal, nanofibers are electrospun and interleaved between mid-plane of laminate composite to conduct mode I and mode II tests. The results shows that efficiency of Nylon 6,6 is better than PCL in mode II, while the effect of PCL on fracture toughness of mode I is more. By mixing these nanofibers the shortage of the individual nanofibers is compensated and so the Nylon 6,6/PCL nanofibers could increased mode I and II fracture toughness. Then all these nanofibers are used between all layers of composite layers to investigate their effect on damaged area. The results showed that PCL could decrease the damaged area about 25% and Nylon 6,6 and mixed nanofibers about 50%.