5 resultados para low temperature treatment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The application of two low-temperature thermochronometers [fission-track analysis and (U-Th)/He analyses, both on apatite] to various tectonostratigraphic units of the Menderes and Alanya Massifs of Turkey has provided significant new constraints to the understanding of their structural evolution. The Menderes Massif of western Anatolia is one of the largest metamorphic core complexes on Earth. The integration of the geochronometric dataset presented in this dissertation with preexisting ones from the literature delineates three groups of samples within the Menderes Massif. In the northern and southern region the massif experienced a Late Oligocene-Early Miocene tectonic denudation and surface uplift; whereas data from the central region are younger, with most ages ranging between the Middle-Late Miocene. The results of this study are consistent with the interpretation for a symmetric exhumation of the Menderes Massif. The Alanya Massif of SW Anatolia presents a typical nappe pile consisting of thrust sheets with contrasting metamorphic histories. Petrological and geochronological data clearly indicate that the tectonometamorphic evolution Alanya started from Late Cretaceous with the northward subduction of an ‘Alanya ocean’ under the Tauride plate. As an effect of the closure of the İzmir–Ankara–Erzincan ocean, northward backthrusting during the Paleocene-Early Eocene created the present stacking order. Apatite fission-track ages from this study range from 31.8 to 26.8 Ma (Late Rupelian-Early Chattian) and point to a previously unrecognized mid-Oligocene cooling/exhumation episode. (U-Th)/He analysis on zircon crystals obtained from the island of Cyprus evidentiate that the Late Cretaceous trondhjemites of the Troodos Massif not recorded a significant cooling event. Instead results for the Late Triassic turbiditic sandstones of the Vlambouros Formation show that the Mamonia mélange was never buried enough to reach the closure temperature of the ZHe radiometric system (ca. 200°C), thus retaining the Paleozoic signature of a previous sedimentary cycle.
Modelling, diagnostics and experimental analysis of plasma assisted processes for material treatment
Resumo:
This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.
Resumo:
Il presente lavoro di tesi riguarda la sintesi di nanopolveri allumina-zirconia, seguendo tre differenti metodologie (sintesi per coprecipitazione, sintesi con il metodo dei citrati, sintesi idrotermale assistita da microonde) e il trattamento termico (calcinazione) delle polveri ottenute, mediante tecniche di riscaldamento convenzionali ed alternative (microonde). Lo scopo del lavoro è consistito nell’individuare, tra le tecniche esaminate, quella più idonea e conveniente, per la preparazione di nanopolveri cristalline 95 mol% Al2O3 – 5 mol% ZrO2 e nell’esaminare gli effetti che la calcinazione condotta con le microonde, ha sulle caratteristiche finali delle polveri, rispetto ai trattamenti termici convenzionali. I risultati ottenuti al termine del lavoro hanno evidenziato che, tra le tecniche di sintesi esaminate, la sintesi idrotermale assistita da microonde, risulta il metodo più indicato e che, il trattamento termico eseguito con le microonde, risulta di gran lunga vantaggioso rispetto a quello convenzionale. La sintesi idrotermale assistita da microonde consente di ottenere polveri nano cristalline poco agglomerate, che possono essere facilmente disaggregate e con caratteristiche microstrutturali del tutto peculiari. L’utilizzo di tale tecnica permette, già dopo la sintesi a 200°C/2ore, di avere ossido di zirconio, mentre per ottenere gli ossidi di alluminio, è sufficiente un ulteriore trattamento termico a basse temperature e di breve durata (400°C/ 5 min). Si è osservato, inoltre, che il trattamento termico condotto con le microonde comporta la formazione delle fasi cristalline desiderate (ossidi di alluminio e zirconio), impiegando (come per la sintesi) tempi e temperature significativamente ridotti. L’esposizione delle polveri per tempi ridotti e a temperature più basse consente di evitare la formazione di aggregati duri nelle nanopolveri finali e di contrastare il manifestarsi di fenomeni di accrescimento di grani, preservando così la “nanostruttura” delle polveri e le sue caratteristiche proprietà.
Resumo:
The research of new advanced processes for syngas production is a part of a European project for the production of a new Gas to Liquid Process (NextGTL). The crucial points in the production of GTL process are the energy required for the air separation used in autothermal reforming or the heat required for steam reforming and the efficiency in carbon utilization. Therefore a new multistep oxy-reforming process scheme was developed at lower temperature with intermediate H2 membrane separation to improve the crucial parameter. The process is characterized by a S/C of 0.7 and O2/C of 0.21 having a smoothed temperature profile in which kinetic regime is easily obtained. Active catalysts for low temperature oxy-reforming process have been studied working at low pressure to discriminate among the catalyst and at high pressure to prove it on industrial condition. It allows the selection of the Rh as active phase among single and bimetallic VIII group metal. The study of the matrix composition and thermal treatment has been carried out on Rh-Mg/Al hydrotalcite selected as reference catalyst. The research to optimize the catalyst lead to enhanced performances through the identification of a limitation of the Rh reduction from the oxides matrix as key point to increase the Rh performances. The Rh loading have been studied to allow the catalyst scale up for pilot process in Chieti in a shape of Rh-HT on honeycomb ceramic material. The developed catalyst has enhanced methane conversion in a inch diameter monolith reactor if compared with the semi-industrial catalyst chosen in the project as the best reference.
Resumo:
Pig meat and carcass quality is a complex concept determined by environmental and genetic factors concurring to the phenotypic variation in qualitative characteristics of meat (fat content, tenderness, juiciness, flavor,etc). This thesis shows the results of different investigations to study and to analyze pig meat and carcass quality focusing mainly on genomic; moreover proteomic approach has been also used. The aim was to analyze data from association studies between genes considered as candidate and meat and carcass quality in different pig breeds. The approach was used to detect new SNP in genes functionally associated to the studied traits and to confirm as candidate other genes already known. Five polymorphisms (one new SNP in Calponin 1 gene and four additional polymorphism already known in other genes) were considered on chromosome 2 (SSC2). Calponin 1 (CNN1) was associated to the studied traits and furthermore the results reported confirmed the data already known for Lactate dehydrogenase A (LDHA), Low density lipoprotein receptor (LDLR), Myogenic differentiation 1 (MYOD1) e Ubiquitin-like 5 (UBL5), in Italian Large White pigs. Using an in silico search it was possible to detect on SSC2 a new SNP of Deoxyhypusine synthase (DHPS) gene partially overlapping with WD repeat domain 83 (WDR83) gene and significant for the meat pH variation in Italian Large White (ILW) pigs. Perilipin 1 (PLIN1) mapping on chromosome 7 and Perilipin 2 (PLIN2) mapping on chromosome 1 were studied and the results obtained in Duroc breed have shown significant associations with carcass traits. Moreover a study of protein composition of porcine LD muscle, indicated an effect of temperature treatment of carcass, on proteins of the sarcoplasmic fraction and in particular on PGM1 phosphorylation. Future studies on pig meat quality should be based on the integration of different experimental approaches (genomics, proteomics, transcriptomics, etc).