6 resultados para iterative method
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
CHAPTER 1:FLUID-VISCOUS DAMPERS In this chapter the fluid-viscous dampers are introduced. The first section is focused on the technical characteristics of these devices, their mechanical behavior and the latest evolution of the technology whose they are equipped. In the second section we report the definitions and the guide lines about the design of these devices included in some international codes. In the third section the results of some experimental tests carried out by some authors on the response of these devices to external forces are discussed. On this purpose we report some technical schedules that are usually enclosed to the devices now available on the international market. In the third section we show also some analytic models proposed by various authors, which are able to describe efficiently the physical behavior of the fluid-viscous dampers. In the last section we propose some cases of application of these devices on existing structures and on new-construction structures. We show also some cases in which these devices have been revealed good for aims that lies outside the reduction of seismic actions on the structures. CHAPTER 2:DESIGN METHODS PROPOSED IN LITERATURE In this chapter the more widespread design methods proposed in literature for structures equipped by fluid-viscous dampers are introduced. In the first part the response of sdf systems in the case of harmonic external force is studied, in the last part the response in the case of random external force is discussed. In the first section the equations of motion in the case of an elastic-linear sdf system equipped with a non-linear fluid-viscous damper undergoing a harmonic force are introduced. This differential problem is analytically quite complex and it’s not possible to be solved in a closed form. Therefore some authors have proposed approximate solution methods. The more widespread methods are based on equivalence principles between a non-linear device and an equivalent linear one. Operating in this way it is possible to define an equivalent damping ratio and the problem becomes linear; the solution of the equivalent problem is well-known. In the following section two techniques of linearization, proposed by some authors in literature, are described: the first technique is based on the equivalence of the energy dissipated by the two devices and the second one is based on the equivalence of power consumption. After that we compare these two techniques by studying the response of a sdf system undergoing a harmonic force. By introducing the equivalent damping ratio we can write the equation of motion of the non-linear differential problem in an implicit form, by dividing, as usual, for the mass of the system. In this way, we get a reduction of the number of variables, by introducing the natural frequency of the system. The equation of motion written in this form has two important properties: the response is linear dependent on the amplitude of the external force and the response is dependent on the ratio of the frequency of the external harmonic force and the natural frequency of the system only, and not on their single values. All these considerations, in the last section, are extended to the case of a random external force. CHAPTER 3: DESIGN METHOD PROPOSED In this chapter the theoretical basis of the design method proposed are introduced. The need to propose a new design method for structures equipped with fluid-viscous dampers arises from the observation that the methods reported in literature are always iterative, because the response affects some parameters included in the equation of motion (such as the equivalent damping ratio). In the first section the dimensionless parameterε is introduced. This parameter has been obtained from the definition of equivalent damping ratio. The implicit form of the equation of motion is written by introducing the parameter ε, instead of the equivalent damping ratio. This new implicit equation of motions has not any terms affected by the response, so that once ε is known the response can be evaluated directly. In the second section it is discussed how the parameter ε affects some characteristics of the response: drift, velocity and base shear. All the results described till this point have been obtained by keeping the non-linearity of the behavior of the dampers. In order to get a linear formulation of the problem, that is possible to solve by using the well-known methods of the dynamics of structures, as we did before for the iterative methods by introducing the equivalent damping ratio, it is shown how the equivalent damping ratio can be evaluated from knowing the value of ε. Operating in this way, once the parameter ε is known, it is quite easy to estimate the equivalent damping ratio and to proceed with a classic linear analysis. In the last section it is shown how the parameter ε could be taken as reference for the evaluation of the convenience of using non-linear dampers instead of linear ones on the basis of the type of external force and the characteristics of the system. CHAPTER 4: MULTI-DEGREE OF FREEDOM SYSTEMS In this chapter the design methods of a elastic-linear mdf system equipped with non-linear fluidviscous dampers are introduced. It has already been shown that, in the sdf systems, the response of the structure can be evaluated through the estimation of the equivalent damping ratio (ξsd) assuming the behavior of the structure elastic-linear. We would to mention that some adjusting coefficients, to be applied to the equivalent damping ratio in order to consider the actual behavior of the structure (that is non-linear), have already been proposed in literature; such coefficients are usually expressed in terms of ductility, but their treatment is over the aims of this thesis and we does not go into further. The method usually proposed in literature is based on energy equivalence: even though this procedure has solid theoretical basis, it must necessary include some iterative process, because the expression of the equivalent damping ratio contains a term of the response. This procedure has been introduced primarily by Ramirez, Constantinou et al. in 2000. This procedure is reported in the first section and it is defined “Iterative Method”. Following the guide lines about sdf systems reported in the previous chapters, it is introduced a procedure for the assessment of the parameter ε in the case of mdf systems. Operating in this way the evaluation of the equivalent damping ratio (ξsd) can be done directly without implementing iterative processes. This procedure is defined “Direct Method” and it is reported in the second section. In the third section the two methods are analyzed by studying 4 cases of two moment-resisting steel frames undergoing real accelerogramms: the response of the system calculated by using the two methods is compared with the numerical response obtained from the software called SAP2000-NL, CSI product. In the last section a procedure to create spectra of the equivalent damping ratio, affected by the parameter ε and the natural period of the system for a fixed value of exponent α, starting from the elasticresponse spectra provided by any international code, is introduced.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.
Resumo:
The dynamic character of proteins strongly influences biomolecular recognition mechanisms. With the development of the main models of ligand recognition (lock-and-key, induced fit, conformational selection theories), the role of protein plasticity has become increasingly relevant. In particular, major structural changes concerning large deviations of protein backbones, and slight movements such as side chain rotations are now carefully considered in drug discovery and development. It is of great interest to identify multiple protein conformations as preliminary step in a screening campaign. Protein flexibility has been widely investigated, in terms of both local and global motions, in two diverse biological systems. On one side, Replica Exchange Molecular Dynamics has been exploited as enhanced sampling method to collect multiple conformations of Lactate Dehydrogenase A (LDHA), an emerging anticancer target. The aim of this project was the development of an Ensemble-based Virtual Screening protocol, in order to find novel potent inhibitors. On the other side, a preliminary study concerning the local flexibility of Opioid Receptors has been carried out through ALiBERO approach, an iterative method based on Elastic Network-Normal Mode Analysis and Monte Carlo sampling. Comparison of the Virtual Screening performances by using single or multiple conformations confirmed that the inclusion of protein flexibility in screening protocols has a positive effect on the probability to early recognize novel or known active compounds.
Resumo:
La tesi è suddivisa in due parti. La prima è dedicata alla determinazione della Deflessione della Verticale (DdV) in Medicina (BO). Vengono presentati tre metodi per la determinazione delle componenti della DdV. Il primo utilizza la livellazione geometrica ed il sistema GNSS, il secondo, eseguito dal dott. Serantoni, utilizza il sistema QDaedalus, messo a punto all' ETH di Zurigo ed il terzo approccio utilizza il programma ConvER, messo a disposizione dalla regione Emilia-Romagna. Nella seconda parte viene presentato un metodo per la determinazione del Coefficiente di Rifrazione Atmosferico (CRA). La procedura di calcolo è di tipo iterativo ed utilizza, oltre agli angoli zenitali, anche le distanze misurate. Il metodo è stato testato in due aree di studio. La prima nella città di Limassol (Cipro) in ambiente urbano nell' autunno 2013. La seconda in Venezia nella laguna durante l'estate 2014.
Resumo:
This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.
Resumo:
This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.