3 resultados para histone lysine methyltransferase

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is characterized by the presence of the BCR::ABL1 fusion gene, leading to a constitutively active tyrosine kinase that drives the disease. Genomic instability is a hallmark of CML, contributing to disease progression and treatment resistance. A study identified SETD2, a histone methyltransferase, as frequently dysfunctional in advanced-phase CML, resulting in reduced trimethylation of Histone H3 at lysine 36 (H3K36Me3). This loss is associated with poor prognosis and increased genetic instability. Investigations revealed that SETD2 dysfunction is caused by post-translational modifications mediated by Aurora kinase A and MDM2, leading to proteasome-mediated degradation. Aurora kinase A phosphorylates SETD2, while MDM2 ubiquitinates it, targeting it for degradation. Inhibition of MDM2 and Aurora kinase A restored SETD2 expression and activity, suggesting potential therapeutic targets. Loss of SETD2 and H3K36Me3 impairs DNA repair mechanisms, favoring error-prone repair pathways over faithful ones, exacerbating genetic instability. Reintroduction of SETD2 into deficient cells restored DNA repair pathways, preserving genomic integrity. Analysis of CD34+ progenitor cells from CML patients showed reduced SETD2 levels compared to healthy individuals, correlating with decreased clonogenic capacity. Notably, SETD2 loss is not detectable at diagnosis but emerges during disease progression, indicating its role as an early indicator of CML advancement. Therapeutically, inhibitors targeting Aurora kinase A, MDM2, and the proteasome showed efficacy in cells expressing SETD2, particularly in those with low SETD2 levels. Proteasome inhibitors induced apoptosis and DNA damage in SETD2-deficient cells, highlighting their potential for CML treatment. In conclusion, SETD2 acts as a tumor suppressor in CML, with its dysfunction contributing to genetic instability and disease progression. Targeting the mechanisms of SETD2 loss presents promising therapeutic avenues for controlling CML proliferation and restoring genomic integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgrounds:Treatment of patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) not eligible to high dose therapy represents an unmet medical need. Panobinostat showed encouraging therapeutic activity in studies conducted in lymphoma cell lines and in vivo in patients with advanced hematologic malignancies.Purpose:FIL-PanAL10 (NCT01523834) is a phase II, prospective multicenter trial of the Fondazione Italiana Linfomi (FIL) to evaluate safety and efficacy of single agent Panobinostat as salvage therapy for R/R DLBCL patients and to evaluate a possible relationships between response and any biological features. Patients and Methods:Patients with R/R DLBCL were included. The treatment plan included 6 induction courses with Panobinostat monotherapy followed by other 6 courses of consolidation. The primary objective was to evaluate Panobinostat activity in terms of overall response (OR); secondary objectives were: CR rate, time to response (TTR), progression-free survival (PFS), safety and feasibility of Panobinostat. We included evaluation of the impact of pharmacogenetics, immunohistochemical patterns and patient’s specific gene expression and mutations as potential predictors of response to Panobinostat as explorative objectives. To this aim a pre-enrollment new tissue biopsy was mandatory. ResultsThirty-five patients, 21 males (60%), were enrolled between June 2011 and March 2014. At the end of induction phase, 7 responses (20%) were observed, including 4 CR (11%), while 28 patients (80%) discontinued treatment due to progressive disease (PD) in 21 (60%) or adverse events in 7 (20%). Median TTR in 9 responders was 2.6 months (range 1.8-12). With a median follow up of 6 months (range 1-34), the estimated 12 months PFS and OS were 27% and 30.5%, respectively. Grade 3-4 thrombocytopenia and neutropenia were the most common toxicities (in 29 (83%) and 12 (34%) patients, respectively. Conclusions The results of this study indicate that Panobinostat might be remarkably active in some patients with R/R DLBCL, showing durable CR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Childhood neuroblastoma is the most common solid tumour of infancy and highly refractory to therapy. One of the most powerful prognostic indicators for this disease is the N-Myc gene amplification, which occurs in approximately 25% of all neuroblastomas. N-Myc is a member of transcription factors belonging to a subclass of the larger group of proteins sharing Basic-Region/Helix–Loop–Helix/Leucin-Zipper (BR/HLH/LZ) motif. N-Myc oncoproteins may determine activation or repression of several genes thanks to different protein-protein interactions that may modulate its transcriptional regulatory ability and therefore its potential for oncogenicity. Chromatin modifications, including histone methylation, have a crucial role in transcription de-regulation of many cancer-related genes. Here, it was investigated whether N-Myc can functionally and/or physically interact with two different factors involved in methyl histone modification: WDR5 (core member of the MLL/Set1 methyltransferase complex) and the de- methylase LSD1. Co-IP assays have demonstrated the presence of both N-Myc-WDR5 and N-Myc-LSD1 complexes in two neuroblastoma cell lines. Human N-Myc amplified cell lines were used as a model system to investigate on transcription activation and/or repression mechanisms carried out by N-Myc-LSD1 and N-Myc-WDR5 protein complexes. qRT-PCR and immunoblot assays underlined the ability of both complexes to positively (N-Myc-WDR5) and negatively (N-Myc-LSD1) influence transcriptional regulation of crititical neuroblastoma N-Myc-related genes, MDM2, p21 and Clusterin. Ch-IP experiments have revealed the binding of the N-Myc complexes above mentioned to the gene promoters analysed. Finally, pharmacological treatment pointed to abolish N-Myc and LSD1 activity were performed to test cellular alterations, such as cell viability and cell cycle progression. Overall, the results presented in this work suggest that N-Myc can interact with two distinct histone methyl modifiers to positively and negatively affect gene transcription in neuroblastoma.