2 resultados para electrochemical properties

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.