3 resultados para driver information systems, genetic algorithms, prediction theory, transportation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.
Resumo:
The thesis deals with the problem of Model Selection (MS) motivated by information and prediction theory, focusing on parametric time series (TS) models. The main contribution of the thesis is the extension to the multivariate case of the Misspecification-Resistant Information Criterion (MRIC), a criterion introduced recently that solves Akaike’s original research problem posed 50 years ago, which led to the definition of the AIC. The importance of MS is witnessed by the huge amount of literature devoted to it and published in scientific journals of many different disciplines. Despite such a widespread treatment, the contributions that adopt a mathematically rigorous approach are not so numerous and one of the aims of this project is to review and assess them. Chapter 2 discusses methodological aspects of MS from information theory. Information criteria (IC) for the i.i.d. setting are surveyed along with their asymptotic properties; and the cases of small samples, misspecification, further estimators. Chapter 3 surveys criteria for TS. IC and prediction criteria are considered for: univariate models (AR, ARMA) in the time and frequency domain, parametric multivariate (VARMA, VAR); nonparametric nonlinear (NAR); and high-dimensional models. The MRIC answers Akaike’s original question on efficient criteria, for possibly-misspecified (PM) univariate TS models in multi-step prediction with high-dimensional data and nonlinear models. Chapter 4 extends the MRIC to PM multivariate TS models for multi-step prediction introducing the Vectorial MRIC (VMRIC). We show that the VMRIC is asymptotically efficient by proving the decomposition of the MSPE matrix and the consistency of its Method-of-Moments Estimator (MoME), for Least Squares multi-step prediction with univariate regressor. Chapter 5 extends the VMRIC to the general multiple regressor case, by showing that the MSPE matrix decomposition holds, obtaining consistency for its MoME, and proving its efficiency. The chapter concludes with a digression on the conditions for PM VARX models.