12 resultados para direct injection

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le cardiomiopatie che insorgono a seguito di infarto miocardico sono causa di elevata morbilità e mortalità dalle importanti ricadute cliniche, dovute alle patologie insorgenti a seguito dell’ischemia e della cicatrice post-infatuale. Il ventricolo sinistro danneggiato va incontro a un rimodellamento progressivo, con perdita di cardiomiociti e proliferazione dei fibroblasti, risultante in un’architettura e in una funzionalità dell’organo distorta. I fibroblasti cardiaci sono i principali responsabili della fibrosi, il processo di cicatrizzazione caratterizzato da un’eccessiva deposizione di matrice extracellulare (ECM). Negli ultimi anni gli sforzi del nostro laboratorio sono stati volti a cercare di risolvere questo problema, attraverso l’uso di una molecola da noi sintetizzata, un estere misto degli acidi butirrico, retinoico e ialuronico, HBR, capace di commissionare le cellule staminali in senso cardio-vascolare. Studi in vivo mostrano come l’iniezione diretta di HBR in cuori di animali sottoposti a infarto sperimentale, sia in grado, tra le atre cose, di diminuire la fibrosi cardiaca. Sulla base di questa evidenza abbiamo cercato di capire come e se HBR agisse direttamente sui fibroblasti, indagando i meccanismi coinvolti nella riduzione della fibrosi in vivo.. In questa tesi abbiamo dimostrato come HBR abbia un’azione diretta su fibroblasti, inibendone la proliferazione, senza effetti citotossici. Inoltre HBR induce una significativa riduzione della deposizione di collagene.. HBR agisce sull’espressione genica e sulla sintesi proteica, sopprimendo la trascrizione dei geni del collagene, così come dell’a-sma, inibendo la trasizione fibroblasti-miofibroblasti, e promuovendo la vasculogenesi (attraverso VEGF), la chemoattrazione di cellule staminali (attraverso SDF) e un’attività antifibrotica (inibendo CTGF). HBR sembra modulare l’espressione genica agendo direttamente sulle HDAC, probabilmente grazie alla subunità BU. L’abilità di HBR di ridurre la fibrosi post-infartuale, come dimostrato dai nostri studi in vivo ed in vitro, apre la strada a importanti prospettive terapeutiche.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zero-carbon powertrains development has become one of the main challenges for automotive industries around the world. Following this guideline, several approaches such as powertrain electrification, advanced combustions, and hydrogen internal combustion engines have been aimed to achieve the goal. Low Temperature Combustions, characterized by a simultaneous reduction of fuel consumption and emissions, represent one of the most studied solutions moving towards a sustainable mobility. Previous research demonstrate that Gasoline partially premixed Compression Ignition combustion is one of the most promising LTC. Mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture, GCI combustion has shown a good potential to achieve the high thermal efficiency and low pollutants in compression ignited engines required by future emission regulations. Despite its potential, GCI combustion might suffer from low combustion controllability and stability, because gasoline spontaneous ignition is significantly affected by slight variations of the local in-cylinder thermal conditions. Therefore, to properly control GCI combustion assuring the maximum performance, a deep knowledge of the combustion process, i.e., gasoline auto-ignition and the effect of the control parameters on the combustion and pollutants, is mandatory. This PhD dissertation focuses on the study of GCI combustion in a light-duty compression ignited engine. Starting from a standard 1.3L diesel engine, this work describes the activities made moving toward the full conversion of the engine. A preliminary study of the GCI combustion was conducted in a “Single-Cylinder” engine configuration highlighting combustion characteristics and dependencies on the control parameters. Then, the full engine conversion was performed, and a wide experimental campaign allowed to confirm the benefits of this advanced combustion methodologies in terms of pollutants and thermal efficiency. The analysis of the in-cylinder pressure signal allowed to study in depth the GCI combustion and develop control-oriented models aimed to improve the combustion stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current environmental crisis is forcing the automotive industry to face tough challenges for the Internal Combustion Engines development in order to reduce the emissions of pollutants and Greenhouse gases. In this context, in the last decades, the main technological solutions adopted by the manufacturers have been the direct injection and the engine downsizing, which led to the rising of new concerns related to the fuel-cylinder walls physical interaction. The fuel spray possibly impacts the cylinder liner wall, which is wetted by the lubricant oil thus causing the derating of the lubricant properties, increasing the oil consumption, and contaminating the lubricant oil in the crankcase. Also, concerning hydrogen fuelled internal combustion engines, it is likely that the high near-wall temperature, which is typical of the hydrogen flame, results in the evaporation of a portion of the lubricant oil, increasing its consumption. With regards on the innovative combustion systems and their control strategies, optical accessible engines are fundamental tools for experimental investigations on such combustion systems. Though, due to the optical measurement line, optical engines suffer from a high level of blow-by, which must be accounted for. In light of the above, this thesis work aims to develop numerical methodologies with the aim to build useful tools for supporting the design of modern engines. In particular, a one-dimensional modelling of the lubricant oil-fuel dilution and oil evaporation has been performed and coupled with an optimization algorithm to achieve a lubricant oil surrogate. Then, a quasi-dimensional blow-by model has been developed and validated against experimental data. Such model, has been coupled with CFD 3D simulations and directly implemented in CFD 3D. Finally, CFD 3D simulations coupled with the VOF method have been performed in order to validate a methodology for studying the impact of a liquid droplet on a solid surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T2Well-ECO2M is a coupled wellbore reservoir simulator still under development at Lawrence Berkeley National Laboratory (USA) with the ability to deal with a mixture of H2O-CO2-NaCl and includes the simulation of CO2 phase transition and multiphase flow. The code was originally developed for the simulation of CO2 injection into deep saline aquifers and the modelling of enhanced geothermal systems; however, the focus of this research was to modify and test T2Well-ECO2M to simulate CO2 injection into depleted gas reservoirs. To this end, the original code was properly changed in a few parts and a dedicated injection case was developed to study CO2 phase transition inside of a wellbore and the corresponding thermal effects. In the first scenario, the injection case was run applying the fully numerical approach of wellbore to formation heat exchange calculation. Results were analysed in terms of wellbore pressure and temperature vertical profiles, wellhead and bottomhole conditions, and characteristic reservoir displacement fronts. Special attention was given to the thorough analysis of bottomhole temperature as the critical parameter for hydrate formation. Besides the expected direct effect of wellbore temperature changes on reservoir conditions, the simulation results indicated also the effect of CO2 phase change in the near wellbore zone on BH pressure distribution. To test the implemented software changes, in a second scenario, the same injection case was reproduced using the improved semi-analytical time-convolution approach for wellbore to formation heat exchange calculation. The comparison of the two scenarios showed that the simulation of wellbore and reservoir parameters after one year of continuous CO2 injection are in good agreement with the computation time to solve the time-convolution semi-analytical reduced. The new updated T2Well-ECO2M version has shown to be a robust and performing wellbore-reservoir simulator that can be also used to simulate the CO2 injection into depleted gas reservoirs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionizing radiations are important tools employed every day in the modern society. For example, in medicine they are routinely used for diagnostic and therapy. The large variety of applications leads to the need of novel, more efficient, low-cost ionizing radiation detectors with new functionalities. Personal dosimetry would benefit from wearable detectors able to conform to the body surfaces. Traditional semiconductors used for ionizing radiation direct detectors offer high performance but they are intrinsically stiff, brittle and require high voltages to operate. Hybrid lead-halide perovskites emerged recently as a novel class of materials for ionizing radiation detection. They combine high absorption coefficient, solution processability and high charge transport capability, enabling efficient and low-cost detection. The deposition from solution allows the fabrication of thin-film flexible devices. In this thesis, I studied the detection properties of different types of hybrid perovskites, deposited from solution in thin-film form, and tested under X-rays, gamma-rays and protons beams. I developed the first ultraflexible X-ray detector with exceptional conformability. The effect of coupling organic layers with perovskites was studied at the nanoscale giving a direct demonstration of trap passivation effect at the grain boundaries. Different perovskite formulations were deposited and tested to improve the film stability. I report about the longest aging studies on perovskite X-ray detectors showing that the addition of starch in the precursors’ solution can improve the stability in time with only a 7% decrease in sensitivity after 630 days of storage in ambient conditions. 2D perovskites were also explored as direct detector for X-rays and gamma-rays. Detection of 511 keV photons by a thin-film device is here demonstrated and was validated for monitoring a radiotracer injection. At last, a new approach has been used: a 2D/3Dmixed perovskite thin-film demonstrated to reliably detect 5 MeV protons, envisioning wearable dose monitoring during proton/hadron therapy treatments.