3 resultados para cellular distribution

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human DMD locus encodes dystrophin protein. Absence or reduced levels of dystrophin (DMD or BMD phenotype, respectively) lead to progressive muscle wasting. Little is known about the complex coordination of dystrophin expression and its transcriptional regulation is a field of intense interest. In this work we found that DMD locus harbours multiple long non coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. These lncRNAs are tissue-specific and highly expressed during myogenesis, suggesting a possible role in tissue-specific expression of DMD gene isoforms. Their forced ectopic expression in human muscle and neuronal cells leads to a specific and negative regulation of endogenous dystrophin full lenght isoforms. An intriguing aspect regarding the transcription of the DMD locus is the gene size (2.4Mb). The mechanism that ensures the complete synthesis of the primary transcript and the coordinated splicing of 79 exons is still completely unknown. By ChIP-on-chip analyses, we discovered novel regions never been involved before in the transcription regulation of the DMD locus. Specifically, we observed enrichments for Pol II, P-Ser2, P-Ser5, Ac-H3 and 2Me-H3K4 in an intronic region of 3Kb (approximately 21Kb) downstream of the end of DMD exon 52 and in a region of 4Kb spanning the DMD exon 62. Interestingly, this latter region and the TSS of Dp71 are strongly marked by 3Me-H3K36, an histone modification associated with the regulation of splicing process. Furthermore, we also observed strong presence of open chromatin marks (Ac-H3 and 2Me-H3K4) around intron 34 and the exon 45 without presence of RNA pol II. We speculate that these two regions may exert an enhancer-like function on Dp427m promoter, although further investigations are necessary. Finally, we investigated the nuclear-cytoplasmic compartmentalization of the muscular dystrophin mRNA and, specifically, we verified whether the exon skipping therapy could influence its cellular distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Follicular lymphoma (FL) is a B cell neoplasm, composed of follicle center cells, that accounts for about 20% of all lymphomas, with the highest incidence reported in the USA and western Europe. FL has been considered a virtually incurable disease, with a high response rate alternated with frequent post-therapy relapses or progression towards more aggressive lymphomas. Due to the extreme variability in outcome, many efforts were made to predict prognosis, the need for therapy, and the likelihood of evolution. Even if clinical scores turned out to be robust and easy to use in clinical practice for patient risk stratification, marked heterogeneity in outcome remains within each group and further insights into the biology of FL are needed. The genome-wide approach underscored the pivotal role of the FL microenvironment in the evolution of the disease. In 2004, a landmark study by Dave et al. first described the microenvironment impact on tumor biology. By gene expression profiling they identified two different immune response signatures, involving T-cells and macrophages which seemed to independently predict FL outcome, but their exact is not completely understood and different studies led to variable results. Subsequently, many workgroups identified in amount and distribution pattern of these different cell subsets features which can impact prognosis, this leading to hypothesizing the use of these parameters as surrogate markers of the molecular signature. We aimed to assess the possible contributions of micro-environmental components to FL transformation or progression, its relevance as a prognostic/predictive tool, and its potential role as an innovative therapeutic target. We used immunohistochemical techniques, focusing specifically on macrophages and T-cells subsets, and then found correlations between the presence, proportions, and distribution of these reactive cells and the clinical outcomes leading to the future development of a reliable tool for upfront risk stratification of patients affected by FL.