18 resultados para cell cycle progression
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Through the years, several studies reported the involvement of nuclear lipid signalling as highly connected with cell cycle progression. Indeed, nuclear Phosphatidylinositol-4,5-Biphosphate (PIP2) hydrolisis mediated by Phospholipases C (PLC), which leads to production of the second messengers Diacylglycerol (DAG) and Inositol-1,4,5-Triphosphate (IP3), is a fundamental event for both G1/S and G2/M checkpoints. In particular, we found that nuclear DAG production was mediated by PLCbeta1, enzyme mainly localized in the nucleus of K562 human erythroleukemia cells. This event triggered the activation and nuclear translocation of PKCalpha, which, in turn, resulted able to affect cell cycle via modulation of Cyclin D3 and Cyclin B1, two important enzymes for G1/S transition and G2/M progression respectively.
Resumo:
In cycling cells positive stimuli like nutrient, growth factors and mitogens increase ribosome biogenesis rate and protein synthesis to ensure both growth and proliferation. In contrast, under stress situation, proliferating cells negatively modulate ribosome production to reduce protein synthesis and block cell cycle progression. The main strategy used by cycling cell to coordinate cell proliferation and ribosome biogenesis is to share regulatory elements, which participate directly in ribosome production and in cell cycle regulation. In fact, there is evidence that stimulation or inhibition of cell proliferation exerts direct effect on activity of the RNA polymerases controlling the ribosome biogenesis, while several alterations in normal ribosome biogenesis cause changes of the expression and the activity of the tumor suppressor p53, the main effector of cell cycle progression inhibition. The available data on the cross-talk between ribosome biogenesis and cell proliferation have been until now obtained in experimental model in which changes in ribosome biogenesis were obtained either by reducing the activity of the RNA polymerase I or by down-regulating the expression of the ribosomal proteins. The molecular pathways involved in the relationship between the effect of the inhibition of RNA polymerase III (Pol III) activity and cell cycle progression have been not yet investigated. In eukaryotes, RNA Polymerase III is responsible for transcription of factors involved both in ribosome assembly (5S rRNA) and rRNA processing (RNAse P and MRP).Thus, the aim of this study is characterize the effects of the down-regulation of RNA Polymerase III activity, or the specific depletion of 5S rRNA. The results that will be obtained might lead to a deeper understanding of the molecular pathway that controls the coordination between ribosome biogenesis and cell cycle, and might give useful information about the possibility to target RNA Polymerase III for cancer treatment.
Resumo:
The Clusterin (CLU) gene produces different forms of protein products which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e. H3 mRNA, PCNA and cyclins A, B1 and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 hours. All CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, strongly inducing the nuclear form of CLU (nCLU) and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumour suppressor factor.
Resumo:
The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.
Resumo:
The post genomic era, set the challenge to develop drugs that target an ever-growing list of proteins associated with diseases. However, an increase in the number of drugs approved every year is nowadays still not observed. To overcome this gap, innovative approaches should be applied in drug discovery for target validation, and at the same time organic synthetic chemistry has to find new fruitful strategies to obtain biologically active small molecules not only as therapeutic agents, but also as diagnostic tools to identify possible cellular targets. In this context, in view of the multifactorial mechanistic nature of cancer, new chimeric molecules, which can be either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells, were developed using a multitarget-directed drug design strategy. According to this approach, the desired hybrid compounds were obtained by combining in a single chemical entity SAHA analogues, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives able to block cell cycle, to induce apoptosis and cell differentiation and with Sorafenib derivative, a multikinase inhibitor. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on leukemia Bcr-Abl-expressing K562 cell lines, as well as their HDACs inhibition. Preliminary results confirmed that one of the hybrid compounds has the desired chimeric profile. A distinct project was developed in the laboratory of Dr Spring, regarding the synthesis of a diversity-oriented synthesis (DOS) library of macrocyclic peptidomimetics. From a biological point of view, this class of molecules is extremely interesting but underrepresented in drug discovery due to the poor synthetic accessibility. Therefore it represents a valid challenge for DOS to take on. A build/couple/pair (B/C/P) approach provided, in an efficient manner and in few steps, the structural diversity and complexity required for such compounds.
Resumo:
Childhood neuroblastoma is the most common solid tumour of infancy and highly refractory to therapy. One of the most powerful prognostic indicators for this disease is the N-Myc gene amplification, which occurs in approximately 25% of all neuroblastomas. N-Myc is a member of transcription factors belonging to a subclass of the larger group of proteins sharing Basic-Region/Helix–Loop–Helix/Leucin-Zipper (BR/HLH/LZ) motif. N-Myc oncoproteins may determine activation or repression of several genes thanks to different protein-protein interactions that may modulate its transcriptional regulatory ability and therefore its potential for oncogenicity. Chromatin modifications, including histone methylation, have a crucial role in transcription de-regulation of many cancer-related genes. Here, it was investigated whether N-Myc can functionally and/or physically interact with two different factors involved in methyl histone modification: WDR5 (core member of the MLL/Set1 methyltransferase complex) and the de- methylase LSD1. Co-IP assays have demonstrated the presence of both N-Myc-WDR5 and N-Myc-LSD1 complexes in two neuroblastoma cell lines. Human N-Myc amplified cell lines were used as a model system to investigate on transcription activation and/or repression mechanisms carried out by N-Myc-LSD1 and N-Myc-WDR5 protein complexes. qRT-PCR and immunoblot assays underlined the ability of both complexes to positively (N-Myc-WDR5) and negatively (N-Myc-LSD1) influence transcriptional regulation of crititical neuroblastoma N-Myc-related genes, MDM2, p21 and Clusterin. Ch-IP experiments have revealed the binding of the N-Myc complexes above mentioned to the gene promoters analysed. Finally, pharmacological treatment pointed to abolish N-Myc and LSD1 activity were performed to test cellular alterations, such as cell viability and cell cycle progression. Overall, the results presented in this work suggest that N-Myc can interact with two distinct histone methyl modifiers to positively and negatively affect gene transcription in neuroblastoma.
Resumo:
Acute myeloid leukemia (AML) is a haematological malignancies arising from the accumulation of undifferentiated myeloid progenitors with an uncontrolled proliferation. The genomic landscape of AML revealed that the disease is characterized by high level of heterogeneity and is subjected to clonal evolution driven by selective pressure of chemotherapy. In this study, we investigated the therapeutic effects of the inhibition of BRD4 and CDC20 in vitro and ex vivo. We demonstrated that inhibition of BRD4 with GSK1215101A in AML cell lines was effective under hypoxia. It induced the activation of antioxidant response both, at transcriptomic and metabolomic levels, driven by enrichment of NRF2 pathway under normoxic and hypoxic condition. Moreover, the combined treatment with Omaveloxolone, a drug inducing NRF2 activation and NF-κB inhibition, potentiated the effects on apoptosis and colony forming capacity of stem progenitor cells. Lastly, gene expression profiling data revealed that combination treatment induced major changes in genes related to cell cycle, together with enrichment of cell differentiation pathways and negative regulation of WNT, in normoxia and hypoxia. Regarding CDC20, we observed its up-regulation in AML patients. Treatment with two different inhibitors, Apcin and proTAME, was effective in primary AML cells and in AML cell lines, through induction of apoptosis and mitotic arrest. The lack of correlation between proliferation markers and CDC20 levels in AML cell subpopulations supports the idea of alternative CDC20 functions, independent from its essential role during mitosis. CDC20-KD experiments conducted in AML cell lines revealed a mild effect on apoptosis induction, but no significant change in cell cycle progression. In summary, these results allowed the identification of a new strategy combination to improve the effects of BRD4 inhibition on LSC residing in the BM hypoxic niche, and provide some new evidence regarding the potential role of CDC20 as a new target for AML treatment.
Resumo:
Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.
Resumo:
E2F-1 is a transcription factor that plays a key role in cell-cycle control at G1/S check-point level by regulating the timely expression of many target genes whose products are required for S phase entry and progression. In mammalian cells, E2F-1 is negatively regulated by hypo-phosphorylated Retinoblastoma protein (pRb) whereas it is protected against degradation by its binding to Mouse Double Minute 2 protein (MDM2). In this study we experimented a drug combination in order to obtain a strong down-regulation of E2F-1 by acting on two different mechanisms of E2F-1 regulation mentioned above. This was achieved by combining drugs inhibiting the phosphorylation of pRb with drugs inactivating the MDM2 binding capability. The mechanism of action of these drugs in down-regulating E2F-1 level and activity is p53 independent. As expected, when combined, these drugs strongly inhibits E2F-1 and hinder cell proliferation in p53-/- and p53-mutated cells by blocking them in G1 phase of cell cycle, suggesting that E2F-1 down-regulation may represent a valid chemotherapeutic approach to inhibit proliferation in tumors independently of p53 status.
Resumo:
Immunosenescence is characterized by a complex remodelling of the immune system, mainly driven by lifelong antigenic burden. Cells of the immune system are constantly exposed to a variety of stressors capable of inducing apoptosis, including antigens and reactive oxygen species continuously produced during immune response and metabolic pathways. The overall homeostasis of the immune system is based on the balance between antigenic load, oxidative stress, and apoptotic processes on one side, and the regenerative potential and renewal of the immune system on the other. Zinc is an essential trace element playing a central role on the immune function, being involved in many cellular processes, such as cell death and proliferation, as cofactor of enzymes, nuclear factors and hormones. In this context, the age associated changes in the immune system may be in part due to zinc deficiency, often observed in aged subjects and able to induce impairment of several immune functions. Thus, the aim of this work was to investigate the role of zinc in two essential events for immunity during aging, i.e. apoptosis and cell proliferation. Spontaneous and oxidative stress-induced apoptosis were evaluated by flow cytometry in presence of a physiological concentration of zinc in vitro on peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects of different age: a group of young subjects, a group of old subjects and a group of nonagenarians. In addition, cell cycle phases were analyzed by flow cytometry in PBMCs, obtained from the subjects of the same groups in presence of different concentration of zinc. We also analyzed the influence of zinc in these processes in relation to p53 codon 72 polymorphism, known to affect apoptosis and cell cycle in age-dependent manner. Zinc significantly reduces spontaneous apoptosis in all age-groups; while it significantly increases oxidative stress-induced late apoptosis/necrosis in old and nonagenarians subjects. Some factors involved in the apoptotic pathway were studied and a zinc effect on mitochondrial membrane depolarization, cytochrome C release, caspase-3 activation, PARP cleavage and Bcl-2 expression was found. In conclusion, zinc inhibits spontaneous apoptosis in PBMCs contrasting the harmful effects due to the cellular culture conditions. On the other hand, zinc is able to increase toxicity and induce cell death in PBMCs from aged subjects when cells are exposed to stressing agents that compromise antioxidant cellular systems. Concerning the relationship between the susceptibility to apoptosis and p53 codon 72 genotype, zinc seems to affect apoptosis only in PBMCs from Pro- people suggesting a role of this ion in strengthening the mechanism responsible of the higher propensity of Pro- towards apoptosis. Regarding cell cycle, high doses of zinc could have a role in the progression of cells from G1 to S phase and from S to G2/M phase. These effect seems depend on the age of the donor but seems to be unrelated to p53 codon 72 genotype. In order to investigate the effect of an in vivo zinc supplementation on apoptosis and cell cycle, PBMCs from a group of aged subjects were studied before and after six weeks of oral zinc supplementation. Zinc supplementation reduces spontaneous apoptosis and it strongly reduces oxidative stress-induced apoptosis. On the contrary, no effect of zinc was observed on cell cycle. Therefore, it’s clear that in vitro and in vivo zinc supplementation have different effects on apoptosis and cell cycle in PBMCs from aged subjects. Further experiments and clinical trials are necessary to clarify the real effect of an in vivo zinc supplementation because this preliminary data could encourage the of this element in all that disease with oxidative stress pathogenesis. Moreover, the expression of metallothioneins (MTs), proteins well known for their zinc-binding ability and involved in many cellular processes, i.e. apoptosis, metal ions detoxification, oxidative stress, differentiation, was evaluated in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from young and old healthy subjects in presence of different concentration of zinc in vitro. Literature data reported that during ageing the levels of these proteins increase and concomitantly they lose the ability to release zinc. This fact induce a down-regulation of many biological functions related to zinc, such as metabolism, gene expression and signal transduction. Therefore, these proteins may turn from protective in young-adult age to harmful agents for the immune function in ageing following the concept that several genes/proteins that increase fitness early in life may have negative effects later in life: named “Antagonistic Pleyotropy Theory of Ageing”. Data obtained in this work indicate an higher and faster expression of MTs with lower doses of zinc in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from old subjects supporting the antagonistic pleiotropic role of these proteins.
Resumo:
This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. In order to explore, at high resolution, the frequency and size of alterations affecting this locus in adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further available and analyzed for 19 (19%) cases. CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The analysis at the time of relapse showed an almost significant increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 locus were found at very low level with only a non-synonymous substition in the exon 2 of CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014). The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive ALL. Deletions are frequently acquired at the leukemia progression and work as a poor prognostic marker.
Resumo:
The Notch signalling is a cellular pathway that results conserved from Drosophila to Homo sapiens controlling a wide range of cellular processes in development and in differentiated organs. It induces cell proliferation or differentiation, increased survival or apoptosis, and it is involved in stemness maintainance. These functions are conserved, but exerted with a high tissue and cellular context specificity. Signalling activation determs nuclear translocation of the receptor’s cytoplasmic domain and activation of target genes transcription. As many developmental pathway, Notch deregulation is involved in cancer, leading to oncogenic or tumour suppressive role depending on the functions exerted in normal tissue. Notch1 and Notch3 resulted aberrantly expressed in human hepatocellular carcinoma (HCC) that is the more frequent tumour of the liver and the sixth most common tumour worldwide. This thesis has the aim to investigate the role of the signalling in HCC, with particular attention to dissect common and uncommon regulatory pathways between Notch1 and Notch3 and to define the role of the signalling in HCC. Nocth1 and Notch3 were analysed on their regulation on Hes1 target and involvement in cell cycle control. They showed to regulate CDKN1C/p57kip2 expression through Hes1 target. CDKN1C/p57kip2 induces not only cell cycle arrest, but also senescence in HCC cell lines. Moreover, the involvement of Notch1 in cancer progression and epithelial to mesenchymal transition was investigated. Notch1 showed to induce invasion of HCC, regulating EMT and E- Cadherin expression. Moreover, Notch3 showed specific regulation on p53 at post translational levels. In vitro and ex vivo analysis on HCC samples suggests a complex role of both receptors in regulate HCC, with an oncogenic role but also showing tumour suppressive effects, suggesting a complex and deep involvement of this signalling in HCC.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.