13 resultados para bone marrow mesenchymal stem cell
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Over the past few years, in veterinary medicine there has been an increased interest in understanding the biology of mesenchymal stem cells (MSCs). This interest comes from their potential clinical use especially in wound repair, tissue engineering and application in therapeutics fields, including regenerative surgery. MSCs can be isolated directly from bone marrow aspirates, adipose tissue, umbilical cord and various foetal tissues. In this study, mesenchymal stem cells were isolated from equine bone marrow, adipose tissue, cord blood, Wharton’s Jelly and, for the first time, amniotic fluid. All these cell lines underwent in vitro differentiation in chondrocytes, osteocytes and adipocytes. After molecular characterization, cells resulted positive for mesenchymal markers such as CD90, CD105, CD44 and negative for CD45, CD14, CD34 and CD73. Adipose tissue and bone marrow mesenchymal stem cells were successfully applied in the treatment of tendinitis in race horses. Furthermore, for the first time in the horse, skin wounds of septicemic foal, were treated applying amniotic stem cells. Finally, results never reported have been obtained in the present study, isolating mesenchymal stem cells from domestic cat foetal fluid and membranes. All cell lines underwent in vitro differentiation and expressed mesenchymal molecular markers.
Resumo:
Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.
Resumo:
In Leukemias, recent developments have demonstrated that the Hedgehog pathway plays a key-role in the peculiar ability of self renewal of leukemia stem cells. The aim of this research activity was to investigate, through a first in man, Phase I, open label, clinical trial, the role and the impact, mainly in terms of safety profile, adverse events and pharmacokinetics, of a Sonic Hedgehog inhibitor compound on a population of heavely pretreated patients affected by AML, CML, MF, or MDS, resistant or refractory to standard chemotherapy. Thirty-five patients have been enrolled. The drug was administered orally, in 28 days cycles, without rest periods. The compound showed a good safety profile. The half life was of 17-35 hours, justifying the daily administration. Significant signs of activity, in terms of reduction of bone marrow blast cell amount were seen in most of the patients enrolled. Interestingly, correlative biological studies demonstrated that, comparing the gene expression profyiling signature of separated CD34+ cells before and after one cycle of treatment, the most variably expressed genes were involved in the Hh pathway. Moreover, we observed that many genes involved in MDR (multidrug resistance)were significantly down regulated after treatment. These data might lead to future clinical trials based on combinatory approaches, including, for instance, Hh inhibitors and conventional chemotherapy.
Resumo:
In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.
Resumo:
L’osteosarcoma (OS) è il tumore primitivo dell’osso più comune in età pediatrica e adolescenziale. L’OS è stato recentemente riconsiderato come una patologia da de-differenziamento, legata all’interruzione del processo cui vanno incontro i precursori osteoblastici, quali le cellule staminali mesenchimali (MSCs), per trasformarsi in osteoblasti maturi. Il sistema IGF è coinvolto nella regolazione della proliferazione e del differenziamento di cellule di OS. IRS-1 è un mediatore critico di tale via di segnalazione e il suo livello di espressione modula il differenziamento di cellule ematopoietiche. Lo scopo di questa tesi è stato quello di definire il ruolo di IRS-1 nel differenziamento osteoblastico di MSCs e cellule di OS. Il potenziale differenziativo di cellule di OS umano e murino e di MSCs derivate da midollo osseo è stato valutato tramite Alizarin Red staining e Real Time-PCR. Dai dati ottenuti è emerso come i livelli di espressione di IRS-1 diminuiscano durante il differenziamento osteoblastico. Conseguentemente, i livelli di espressione di IRS-1 sono stati manipolati utilizzando shRNA per down-regolare l’espressione della proteina o un plasmide per sovra-esprimerla. Sia la down-regolazione sia la sovra-espressione di IRS-1 hanno inibito il differenziamento osteoblastico delle linee cellulari considerate. Allo scopo di valutare il contributo di IRS-1 nella via di segnalazione di IGF-1R è stato utilizzato l’inibitore di tale recettore, αIR-3. Anche in questo caso è stata osservata una riduzione della capacità differenziativa. L’inibitore del proteasoma MG-132 ha portato ad un aumento dei livelli di IRS-1, portando nuovamente all’inibizione del differenziamento osteoblastico e suggerendo che l’ubiquitinazione di questa proteina potrebbe avere un ruolo importante nel mantenimento di appropriati livelli di espressione di IRS-1. I risultati ottenuti indicano la criticità dei livelli di espressione di IRS-1 nella determinazione della capacità differenziativa sia di cellule di OS umano e murino, sia delle MSCs.
Resumo:
High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Resumo:
Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.
Resumo:
This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.
Resumo:
In the last decades mesenchymal stromal cells (MSC), intriguing for their multilineage plasticity and their proliferation activity in vitro, have been intensively studied for innovative therapeutic applications. In the first project, a new method to expand in vitro adipose derived-MSC (ASC) while maintaining their progenitor properties have been investigated. ASC are cultured in the same flask for 28 days in order to allow cell-extracellular matrix and cell-cell interactions and to mimic in vivo niche. ASC cultured with this method (Unpass cells) were compared with ASC cultured under classic condition (Pass cells). Unpass and Pass cells were characterized in terms of clonogenicity, proliferation, stemness gene expression, differentiation in vitro and in vivo and results obtained showed that Unpass cells preserve their stemness and phenotypic properties suggesting a fundamental role of the niche in the maintenance of ASC progenitor features. Our data suggests alternative culture conditions for the expansion of ASC ex vivo which could increase the performance of ASC in regenerative applications. In vivo MSC tracking is essential in order to assess their homing and migration. Super-paramagnetic iron oxide nanoparticles (SPION) have been used to track MSC in vivo due to their biocompatibility and traceability by MRI. In the second project a new generation of magnetic nanoparticles (MNP) used to label MSC were tested. These MNP have been functionalized with hyperbranched poly(epsilon-lysine)dendrons (G3CB) in order to interact with membrane glycocalix of the cells avoiding their internalization and preventing any cytotoxic effects. In literature it is reported that labeling of MSC with SPION takes long time of incubation. In our experiments after 15min of incubation with G3CB-MNP more then 80% of MSC were labeled. The data obtained from cytotoxic, proliferation and differentiation assay showed that labeling does not affect MSC properties suggesting a potential application of G3CB nano-particles in regenerative medicine.
Resumo:
Numerose evidenze sperimentali hanno dimostrato il contributo delle cellule staminali di derivazione midollare nei processi di rigenerazione epatica dopo danno tissutale. E’ cresciuto pertanto l’interesse sul loro potenziale impiego in pazienti con cirrosi. Questo studio si propone di valutare la fattibilità e la sicurezza della reinfusione intraepatica di cellule staminali midollari autologhe CD133+ in 12 pazienti con insufficienza epatica terminale definita da un punteggio di Model for End Stage of Liver Disease (MELD) compreso tra 17 e 25. L’efficacia in termini di funzionalità epatica rappresenta un obiettivo secondario. Previa mobilizzazione nel sangue periferico mediante somministrazione di granulocyte-colony stimulating factor (G-CSF) alla dose di 7,5 mcg/Kg/b.i.d. e raccolta per leucoaferesi, le cellule CD133+ altamente purificate vengono reinfuse in arteria epatica a partire da 5x104/Kg fino a 1x106/kg. Nei tre giorni successivi si somministra G-CSF per favorire l’espansione e l’attecchimento delle cellule. Durante la mobilizzazione, la reinfusione e nei 12 mesi successivi i pazienti sono sottoposti a periodici controlli clinici, laboratoristici e strumentali e ad attenta valutazione di effetti collaterali. Lo studio è tuttora in corso e ad oggi, 11 pazienti sono stati sottoposti a reinfusione e 4 hanno completato i 12 mesi di follow-up. Il G-CSF è stato ben tollerato e ha consentito di ottenere una buona espansione cellulare. Dopo la reinfusione sono stati documentati un ematoma inguinale e due episodi transitori di encefalopatia portosistemica. Durante il follow-up 4 pazienti sono stati trapiantati e 2 sono morti. Non è stata osservata alcuna modificazione significativa degli indici di funzione epatica. Questi risultati preliminari confermano la possibilità di mobilizzare e reinfondere un numero adeguato di cellule staminali di derivazione midollare in pazienti con malattia epatica in stadio terminale.
Resumo:
Numerose evidenze sperimentali hanno dimostrato il contributo delle cellule staminali (SC) di derivazione midollare nei processi di rigenerazione epatica dopo danno tissutale. E’ cresciuto pertanto l’interesse sul loro potenziale impiego in pazienti con cirrosi. Questo studio si proponeva di valutare la fattibilità e la sicurezza della reinfusione intraepatica di cellule staminali midollari autologhe CD133+ in 12 pazienti con insufficienza epatica terminale. Previa mobilizzazione nel sangue periferico mediante somministrazione di granulocyte-colony stimulating factor (G-CSF) alla dose di 7,5 mcg/Kg/b.i.d. e raccolta per leucoaferesi (solo se la concentrazione di CD133 + SC era > 8/μL), le cellule CD133+ altamente purificate sono state reinfuse in arteria epatica a partire da 5x104/Kg fino a 1x106/kg. Nei tre giorni successivi è stato somministrato G-CSF per favorire l’espansione e l’attecchimento delle cellule. Durante la fase della mobilizzazione e quella della reinfusione sono stati eseguiti saggi biologici quali: caratterizzazione fenotipica delle SC circolanti, saggi clonogenici, valutazione della concentrazione sierica del Hepatocyte Growth Factor (HGF), Stromal-Derived Factor-1 (SDF-1) ed il Vascular-Endotelial Growth Factor (VEGF) e caratterizzazione fenotipica delle CD133+SC purificate. Fino ad oggi sono stati reinfusi 12 pazienti. Questi dati preliminari suggeriscono che è possibile mobilizzare e reinfondere un numero considerevole di SC autologhe CD133+ altamente purificate in pazienti con ESLD . Gli studi biologici mostrano che: il numero di progenitori ematopoietici ed endoteliali circolanti è aumentato dopo il trattamento con G–CSF; le SCs CD133+ altamente purificato esprimono marcatori emopoietici ed endoteliali; la concentrazione sierica di HGF, SDF-1, VEGF e la capacità clonogenica di progenitori emopoietici sono aumentati durante la mobilitazione e nelle fasi di reinfusione; il potenziale clonogenico dei progenitori endoteliali mostra espressione variabile.
Resumo:
The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.
Resumo:
Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.