29 resultados para bio-based nanocomposites
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: diphenolic acid from catechol and from resorcinol. Epichlorohydrin on the other hand, is highly carcinogenic and volatile, leading to a tremendous risk of exposure. Thus, two approaches have been investigated and compared with epichlorohydrin. The resulting resins have been characterized to find an appropriate application, as epoxy are commonly used for a wide range of products, ranging from composite materials for boats to films for food cans. Self-curing capacity was observed for the resin deriving from diphenolic acid from catechol. The glycidyl ether of the diphenolic acid from resorcinol, a fully renewable compound, was cured in isothermal and non-isothermal tests tracked by DSC. Two aliphatic amines were used, namely 1,4-butanediamine and 1,6-hexamethylendiamine, in order to determine the effect of chain length on the curing of an epoxy-amine system and determine the kinetic parameters. The latter are crucial to plan any industrial application. Both diamines demonstrated superior properties compared to traditional bisphenol A-amine systems.
Resumo:
Epoxy resins are widely used in many applications, such as paints, adhesives and matrices for composites materials, since they present the possibility to be easily and conveniently tailored in order to display a unique combination of characteristics. In literature, various examples of bio-based epoxy resins produced from a wide range of renewable sources can be found. Nevertheless, the toxicity and safety of curing agents have not been deeply investigated and it was observed that all of them still present some environmental drawback. Therefore, the development of new environmentally friendly fully bio-based epoxy systems is of great importance for designing green and sustainable materials. In this context, the present project aims at further exploring the possibility of using bio-based compounds as curing agents for epoxy resin precursors. A preliminary evaluation of several amine-based compounds demonstrated the feasibility of using Adenine as epoxy resin hardener. In order to better understand the crosslinking mechanism, the reaction of Adenine with the mono-epoxy compound Glycidyl 2-methylphenyl ether (G2MPE), was study by 1H-NMR analysis. Then Adenine was investigated as hardener of Diglycidil ether of bisphenol A (DGEBA), which is the simplest epoxy resin based on bisphenol A, in order to determine the best hardener/resin stoichiometric ratio, and evaluate the crosslinking kinetics and conversion and the final mechanical properties of the cured resin. Then, Adenine was tested as hardener of commercial epoxy resins, in particular the infusion resin Elan-tron® EC 157 (Elantas), the impregnation resin EPON™ Resin 828 (Hexion) and the bio-based resin SUPER SAP® CLR (Entropyresins). Such systems were used for the production of composites materials reinforced with chopped recycled carbon fibers and natural fibers (flax and jute). The thermo-mechanical properties of these materials have been studied in comparison with those ones of composites obtained with the same thermosetting resin reinforced with chopped virgin carbon fibers.
Resumo:
The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.
Resumo:
Driven by environmental reasons and the expected depletion of crude oil, bio-based polymers are currently undergoing a renaissance in the attempt to replace fossil-based ones. The present work aims at contributing in the development of the steps that start from biomass and move to new polymeric multifunctional materials. The study focuses on two bio-based building blocks (itaconic and vanillic acids) characterized by exploitable functionalities, i.e. a lateral double bond and a substituted aromatic ring respectively, able to confer interesting properties to the final polymers. The lateral double bond of dimethyl itaconate was functionalized via thia-Michael addition reaction obtaining a thermo-stable building block that can undergo polycondensation under classical conditions of reaction. The addition of a long lateral chain allows the polymer to express antimicrobial activity against Staphylococcus aureus making it attractive for packaging and targeting antimicrobial applications. Moreover, the architecture of the homopolymer was modified by means of copolymerization with dimethyl 2,5-furandicarboxylate thus improving the rigidity and obtaining a thermo-processable material. Potential applications as thermoset or thermoplastic material have been discussed. As concerns vanillic acid, the presence of aromatic rings on the polymer backbone imparts high thermal stability, but brittle behaviour in the homopolymer. Therefore, the architecture of the polyester was successfully tuned by means of copolymerization with a flexible bio-based comonomer, i.e. ω-pentadecalactone, providing processable random copolymers. An in depth investigation of water transport mechanism has been undertaken on the synthesized polyesters. Since the copolymers present a succession of aromatic and aliphatic units, as a consequence of the chemical structure water vapor permeability interposes between polyethylene and poly(ethylene terephthalate) proving that the copolyesters are suitable for packaging applications. Moving towards a sustainable model of development, novel sustainable synthetic pathways for the eco-design of new bio-based polymeric structures with high value functionalities and different potential applications have been successfully developed.
Resumo:
Levulinic Acid and its esters are polyfunctional molecules obtained by biomass conversion. The most investigated strategy for the valorization of LA is its hydrogenation towards fuel additives, solvents and other added-value bio-based chemicals and, in this context, heterogeneous and homogeneous catalysts are widely used. Most commonly, it is typically performed with molecular hydrogen (H2) in batch systems, with high H2 pressures and noble metal catalysts. Several works reported the batch liquid-phase hydrogenation of LA and its esters by heterogenous catalysts which contained support with Brønsted acidity in order to obtain valeric acid and its esters. Furthermore, bimetallic and monometallic systems composed by both a metal for hydrogen activation and a promoter were demonstrated to be suitable catalysts for reduction of carboxylic group. However, there were no studies in the literature reporting the hydrogenation of alkyl levulinates to 1-pentanol (1-PAO). Therefore, bimetallic and monometallic catalysts were tested for one-pot hydrogenation of methyl levulinate to 1-PAO. Re-based catalysts were investigated, this way proving the crucial role of the support for promoting the ring-opening of GVL and its consecutive reduction to valeric compounds. All the reactions were performed in neat without the need of any additional solvents. In these conditions, bimetallic Re-Ru-O/HZSM-5 afforded methyl valerate and valeric acid (VA) with a productivity of 512 mmol gmetal-1 h-1, one of the highest reported in literature to date. Rhenium can also promote the reduction of valeric acid/esters to PV through the formation of 1-pentanol and its efficient esterification/transesterification with the starting material. However, it was proved that Re-based catalysts may undergo leaching of active phase in presence of carboxylic acids, especially by working in neat with VA. Furthermore, the over-reduction of rhenium affects catalytic performance, suggesting not only that a pre-reduction step is unnecessary but also that it could be detrimental for catalyst’s activity.
Resumo:
Over the past few years, the switch towards renewable sources for energy production is considered as necessary for the future sustainability of the world environment. Hydrogen is one of the most promising energy vectors for the stocking of low density renewable sources such as wind, biomasses and sun. The production of hydrogen by the steam-iron process could be one of the most versatile approaches useful for the employment of different reducing bio-based fuels. The steam iron process is a two-step chemical looping reaction based (i) on the reduction of an iron-based oxide with an organic compound followed by (ii) a reoxidation of the reduced solid material by water, which lead to the production of hydrogen. The overall reaction is the water oxidation of the organic fuel (gasification or reforming processes) but the inherent separation of the two semireactions allows the production of carbon-free hydrogen. In this thesis, steam-iron cycle with methanol is proposed and three different oxides with the generic formula AFe2O4 (A=Co,Ni,Fe) are compared in order to understand how the chemical properties and the structural differences can affect the productivity of the overall process. The modifications occurred in used samples are deeply investigated by the analysis of used materials. A specific study on CoFe2O4-based process using both classical and in-situ/ex-situ analysis is reported employing many characterization techniques such as FTIR spectroscopy, TEM, XRD, XPS, BET, TPR and Mössbauer spectroscopy.
Resumo:
Bioconversion of ferulic acid to vanillin represents an attractive opportunity for replacing synthetic vanillin with a bio-based product, that can be label “natural”, according to current food regulations. Ferulic acid is an abundant phenolic compound in cereals processing by-products, such as wheat bran, where it is linked to the cell wall constituents. In this work, the possibility of producing vanillin from ferulic acid released enzymatically from wheat bran was investigated by using resting cells of Pseudomonas fluorescens strain BF13-1p4 carrying an insertional inactivation of vdh gene and ech and fcs BF13 genes on a low copy number plasmid. Process parameters were optimized both for the biomass production phase and the bioconversion phase using food-grade ferulic acid as substrate and the approach of changing one variable while fixing the others at a certain level followed by the response surface methodology (RSM). Under optimized conditions, vanillin up to 8.46 mM (1.4 g/L) was achieved, whereas highest productivity was 0.53 mmoles vanillin L-1 h-1). Cocktails of a number of commercial enzyme (amylases, xylanases, proteases, feruloyl esterases) combined with bran pre-treatment with steam explosion and instant controlled pressure drop technology were then tested for the release of ferulic acid from wheat bran. The highest ferulic acid release was limited to 15-20 % of the ferulic acid occurring in bran, depending on the treatment conditions. Ferulic acid 1 mM in enzymatic hydrolyzates could be bioconverted into vanillin with molar yield (55.1%) and selectivity (68%) comparable to those obtained with food-grade ferulic acid after purification from reducing sugars with a non polar adsorption resin. Further improvement of ferulic acid recovery from wheat bran is however required to make more attractive the production of natural vanillin from this by-product.
Resumo:
The present research project focuses its attention on the study of structure-property relations in polymers from renewable sources (bio-based polymers) such as polymers microbially produced, i.e. polyhydrohyalkanoates (PHAs) or chemically synthesized using monomers from renewable sources, i.e. polyammide 11 (PA11). By means of a broad spectrum of experimental techniques, the influence of different modifications on bio-based polymers such as blending with other components, copolymerization with different co-monomers and introduction of branching to yield complex architectures have been investigated. The present work on PHAs focused on the study of the dependence of polymer properties on both the fermentation process conditions (e.g. bacterial strain and carbon substrate used) and the method adopted to recover PHAs from cells. Furthermore, a solvent-free method using an enzyme and chemicals in an aqueous medium, was developed in order to recover PHAs from cells. Such a method allowed to recover PHA granules in their amorphous state, i.e. in native form useful for specific applications (e.g. paper coating). In addition, a commercial PHA was used as polymeric matrix to develop biodegradable and bio-based composites for food packaging applications. Biodegradable, non-toxic, food contact plasticizers and low cost, widely available lignocellulosic fibers (wheat straw fibers) were incorporated in such a polymeric matrix, in order to decrease PHA brittleness and the polymer cost, respectively. As concerns the study of polyamide 11, both the rheological and the solid-state behavior of PA11 star samples with different arm number and length was studied. Introduction of arms in a polymer molecule allows to modulate melt viscosity behavior which is advantageous for industrial applications. Also, several important solid-state properties, in particular mechanical properties, are affected by the presence of branching. Given the importance of using ‘green’ synthetic strategies in polymer chemistry, novel poly(-amino esters), synthesized via enzymatic-catalyzed polymerization, have also been investigated in this work.
Resumo:
In this dissertation, we focus on developing new green bio-based gel systems and evaluating both the cleaning efficiency and the release of residues on the treated surface, different micro or no destructive techniques, such as optical microscopy, TGA, FTIR spectroscopy, HS-SPME and micro-Spatially Offset Raman spectroscopy (micro-SORS) were tested, proposing advanced analytical protocols. In the first part, a ternary PHB-DMC/BD gel system composed by biodiesel, dimethyl carbonate and poly-3 hydroxybutyrate was developed for cleaning of wax-based coatings applied on indoor bronze. The evaluation of the cleaning efficacy of the gel was carried out on a standard bronze sample which covered a layer of beeswax by restores of Opificio delle Pietre Dure in Florence, and a real case precious indoor bronze sculpture Pulpito della Passione attributed to Donatello. Results obtained by FTIR analysis showed an efficient removal of the wax coating. In the second part, two new kinds of combined gels based on electrospun tissues (PVA and nylon) and PHB-GVL gel were developed for removal of dammar varnish from painting. The electrospun tissue combined gels exhibited good mechanical property, and showed good efficient in cleaning over normal gel. In the third part, green deep eutectic solvent which consists urea and choline chloride was proposed to produce the rigid gel with agar for the removal of proteinaceous coating from oil painting. Rabbit glue and whole egg decorated oil painting mock-ups were selected for evaluating its cleaning efficiency, results obtained by ATR analysis showed the DES-agar gel has good cleaning performance. Furthermore, we proposed micro-SORS as a valuable alternative non-destructive method to explore the DES diffusion on painting mock-up. As a result, the micro-SORS was successful applied for monitoring the liquid diffusion behavior in painting sub-layer, providing a great and useful instrument for noninvasive residues detection in the conservation field.
Resumo:
The impellent global environmental issues related to plastic materials can be addressed by following two different approaches: i) the development of synthetic strategies towards novel bio-based polymers, deriving from biomasses and thus identifiable as CO2-neutral materials, and ii) the development of new plastic materials, such as biocomposites, which are bio-based and biodegradable and therefore able to counteract the accumulation of plastic waste. In this framework, this dissertation presents extensive research efforts have been devoted to the synthesis and characterization of polyesters based on various bio-based monomers, including ω-pentadecalactone, vanillic acid, 2,5-furan dicarboxylic acid, and 5-hydroxymethylfurfural. With the aim of achieving high molecular weight polyesters, different synthetic strategies have been used as melt polycondensation, enzymatic polymerization, ring-opening polymerization and chain extension reaction. In particular, poly(ethylene vanillate) (PEV), poly(ω-pentadecalactone) (PPDL), poly(ethylene vanillate-co-pentadecalactone) (P(EV-co-PDL)), poly(2-hydroxymethyl 5-furancarboxylate) (PHMF), poly(ethylene 2,5-furandicarboxylate) (PEF) with different amount of diethylene glycol (DEG) unit amount, poly(propylene 2,5-furandicarboxylate) (PPF), poly(hexamethylene 2,5-furandicarboxylate), (PHF) have been prepared and extensively characterized. To improve the lacks of poly(hydroxybutyrate-co-valerate) (PHBV), its minimal formulations with natural additives and its blending with medium chain length PHAs (mcl-PHAs) have been tested. Additionally, this dissertation presents new biocomposites based on polylactic acid (PLA), poly(butylene succinate) (PBS), and PHBV, which are polymers both bio-based and biodegradable. To maintain their biodegradability only bio-fillers have been taken into account as reinforcing agents. Moreover, the commitment to sustainability has further limited the selection and led to the exclusive use of agricultural waste as fillers. Detailly, biocomposites have been obtained and discussed by using the following materials: PLA and agro-wastes like tree pruning, potato peels, and hay leftovers; PBS and exhausted non-compliant coffee green beans; PHBV and industrial starch extraction residues.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.
Resumo:
The research work described in this thesis concerns materials for both energy storage and sensoristics applications. Firstly, the synthesis and characterization of magnetite (Fe3O4) functionalyzed with [3-(2-propynylcarbamate)propyl]triethoxysilane (PPTEOS) capable to reduce the gold precursor chloroauric acid (HAuCl4) without the need of additional reducing or stabilising agents is described. These nanoparticles were tested to improve performances of symmetric capacitors based on polyaniline and graphite foil. Energy storage applications were investigated also during six months stay at EPFL University of Lausanne where an investigation about different tailored catalysts for Oxygen Evolution Reaction in a particular Redox Flow Battery was carried out. For what concerns sensing applications, new materials based on cellulose modified with polyaniline and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAAMPSA) were synthesized, characterized and applied to monitor pressure, humidity, heart rate and lastly, bread fermentation in collaboration with the University of Fribourg and Zurich. The characterizations of all the materials investigated compriseed numerous techniques such as infrared attenuated total reflectance spectroscopy (IR-ATR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM), alongside linear and cyclic voltammetry (LSV and CV), electrochemical impedance spectroscopy (EIS) and chronoamperometric analyses.
Resumo:
The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.
Resumo:
Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.
Resumo:
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.