19 resultados para aldehydes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of rancidity in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of free fatty acids (FFA), diglycerides (DG), sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Most of the foods analysed in this study were meat products. In actual fact, lipid oxidation is a major deterioration reaction in meat and meat products and results in adverse changes in the colour, flavour and texture of meat. The development of rancidity has long recognized as a serious problem during meat handling, storage and processing. On a dairy product, a vegetal cream, a study of lipid fraction and development of rancidity during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and phytosterols content. Then, according to the interest that has been growing around functional food in the last years, a new electrophoretic method was optimized and compared with HPLC to check the quality of a beehive product like royal jelly. This manuscript reports the main results obtained in the five activities briefly summarized as follows: 1) comparison between HPLC and a new electrophoretic method in the evaluation of authenticity of royal jelly; 2) study of the lipid fraction of a vegetal cream under different storage conditions; 3) study of lipid oxidation in minced beef during storage under a modified atmosphere packaging, before and after cooking; 4) evaluation of the influence of dietary fat and processing on the lipid fraction of chicken patties; 5) study of the lipid fraction of typical Italian and Spanish pork dry sausages and cured hams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is a safe, harmless, and environmentally benign solvent. From an eco-sustainable chemistry perspective, the use of water instead of organic solvent is preferred to decrease environmental contamination. Moreover, water has unique physical and chemical properties, such as high dielectric constant and high cohesive energy density compared to most organic solvents. The different interactions between water and substrates, make water an interesting candidate as a solvent or co-solvent from an industrial and laboratory perspective. In this regard, organic reactions in aqueous media are of current interest. In addition, from practical and synthetic standpoints, a great advantage of using water is immediately evident, since it does not require any preliminary drying process. This thesis was found on this aspect of chemical research, with particular attention to the mechanisms which control organo and bio-catalysis outcome. The first part of the study was focused on the aldol reaction. In particular, for the first time it has been analyzed for the first time the stereoselectivity of the condensation reaction between 3-pyridincarbaldehyde and the cyclohexanone, catalyzed by morpholine and 4-tertbutyldimethylsiloxyproline, using water as sole solvent. This interest has resulted in countless works appeared in the literature concerning the use of proline derivatives as effective catalysts in organic aqueous environment. These studies showed good enantio and diastereoselectivities but they did not present an in depth study of the reaction mechanism. The analysis of the products diastereomeric ratios through the Eyring equation allowed to compare the activation parameters (ΔΔH≠ and ΔΔS≠) of the diastereomeric reaction paths, and to compare the different type of catalysis. While morpholine showed constant diasteromeric ratio at all temperatures, the O(TBS)-L-proline, showed a non-linear Eyring diagram, with two linear trends and the presence of an inversion temperature (Tinv) at 53 ° C, which denotes the presence of solvation effects by water. A pH-dependent study allowed to identify two different reaction mechanisms, and in the case of O(TBS)-L-proline, to ensure the formation of an enaminic species, as a keyelement in the stereoselective process. Moreover, it has been studied the possibility of using the 6- aminopenicillanic acid (6-APA) as amino acid-type catalyst for aldol condensation between cyclohexanone and aromatic aldehydes. A detailed analysis of the catalyst regarding its behavior in different organic solvents and pH, allowed to prove its potential as a candidate for green catalysis. Best results were obtained in neat conditions, where 6-APA proved to be an effective catalyst in terms of yields. The catalyst performance in terms of enantio- and diastereo-selectivity, was impaired by the competition between two different catalytic mechanisms: one via imine-enamine mechanism and one via a Bronsted-acid catalysis. The last part of the thesis was dedicated to the enzymatic catalysis, with particular attention to the use of an enzyme belonging to the class of alcohol dehydrogenase, the Horse Liver Alcohol Dehydrogenase (HLADH) which was selected and used in the enantioselective reduction of aldehydes to enantiopure arylpropylic alcohols. This enzyme has showed an excellent responsiveness to this type of aldehydes and a good tolerance toward organic solvents. Moreover, the fast keto-enolic equilibrium of this class of aldehydes that induce the stereocentre racemization, allows the dynamic-kinetic resolution (DKR) to give the enantiopure alcohol. By analyzing the different reaction parameters, especially the pH and the amount of enzyme, and adding a small percentage of organic solvent, it was possible to control all the parameters involved in the reaction. The excellent enatioselectivity of HLADH along with the DKR of arylpropionic aldehydes, allowed to obtain the corresponding alcohols in quantitative yields and with an optical purity ranging from 64% to >99%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterocyclic compounds represent almost two-thirds of all the known organic compounds: they are widely distributed in nature and play a key role in a huge number of biologically important molecules including some of the most significant for human beings. A powerful tool for the synthesis of such compounds is the hetero Diels-Alder reaction (HDA), that involve a [4+2] cycloaddition reaction between heterodienes and suitable dienophiles. Among heterodienes to be used in such six-membered heterocyclic construction strategy, 3-trialkylsilyloxy-2-aza-1,3-dienes (Fig 1) has been demonstrated particularly attractive. In this thesis work, HDA reactions between 2-azadienes and carbonylic and/or olefinic dienophiles, are described. Moreover, substitution of conventional heating by the corresponding dielectric heating as been explored in the frame of Microwave-Assisted-Organic-Synthesis (MAOS) which constitutes an up-to-grade research field of great interest both from an academic and industrial point of view. Reaction of the azadiene 1 (Fig 1) will be described using as dienophiles carbonyl compounds as aldehyde and ketones. The six-membered adducts thus obtained (Scheme 1) have been elaborated to biologically active compounds like 1,3-aminols which constitutes the scaffold for a wide range of drugs (Prozac®, Duloxetine, Venlafaxine) with large applications in the treatment of severe diseases of nervous central system (NCS). Scheme 1 The reaction provides the formation of three new stereogenic centres (C-2; C-5; C-6). The diastereoselective outcome of these reactions has been deeply investigated by the use of various combination of achiral and chiral azadienes and aliphatic, aromatic or heteroaromatic aldehydes. The same approach, basically, has been used in the synthesis of piperidin-2-one scaffold substituting the carbonyl dienophile with an electron poor olefin. Scheme 2 As a matter of fact, this scaffold is present in a very large number of natural substances and, more interesting, is a required scaffold for an huge variety of biologically active compounds. Activated olefins bearing one or two sulfone groups, were choose as dienophiles both for the intrinsic characteristic flexibility of the “sulfone group” which may be easily removed or elaborated to more complex decorations of the heterocyclic ring, and for the electron poor property of this dienophiles which makes the resulting HDA reaction of the type “normal electron demand”. Synthesis of natural compounds like racemic (±)-Anabasine (alkaloid of Tobacco’s leaves) and (R)- and (S)-Conhydrine (alkaloid of Conium Maculatum’s seeds and leaves) and its congeners, are described (Fig 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional logic gates are rapidly reaching the limits of miniaturization. Overheating of these components is no longer negligible. A new physical approach to the machine was proposed by Prof. C S. Lent “Molecular Quantum cellular automata”. Indeed the quantum-dot cellular automata (QCA) approach offers an attractive alternative to diode or transistor devices. Th units encode binary information by two polarizations without corrent flow. The units for QCA theory are called QCA cells and can be realized in several way. Molecules can act as QCA cells at room temperature. In collaboration with STMicroelectronic, the group of Electrochemistry of Prof. Paolucci and the Nananotecnology laboratory from Lecce, we synthesized and studied with many techniques surface-active chiral bis-ferrocenes, conveniently designed in order to act as prototypical units for molecular computing devices. The chemistry of ferrocene has been studied thoroughly and found the opportunity to promote substitution reaction of a ferrocenyl alcohols with various nucleophiles without the aid of Lewis acid as catalysts. The only interaction between water and the two reagents is involve in the formation of a carbocation specie which is the true reactive species. We have generalized this concept to other benzyl alcohols which generating stabilized carbocations. Carbocation describe in Mayr’s scale were fondametal for our research. Finally, we used these alcohols to alkylate in enantioselective way aldehydes via organocatalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present Thesis studies three alternative solvent groups as sustainable replacement of traditional organic solvents. Some aspects of fluorinated solvents, supercritical fluids and ionic liquids, have been analysed with a critical approach and their effective “greenness” has been evaluated from the points of view of the synthesis, the properties and the applications. In particular, the attention has been put on the environmental and human health issues, evaluating the eco-toxicity, the toxicity and the persistence, to underline that applicability and sustainability are subjects with equal importance. The “green” features of fluorous solvents and supercritical fluids are almost well-established; in particular supercritical carbon dioxide (scCO2) is probably the “greenest” solvent among the alternative solvent systems developed in the last years, enabling to combine numerous advantages both from the point of view of industrial/technological applications and eco-compatibility. In the Thesis the analysis of these two classes of alternative solvents has been mainly focused on their applicability, rather than the evaluation of their environmental impact. Specifically they have been evaluated as alternative media for non-aqueous biocatalysis. For this purpose, the hydrophobic ion pairing (HIP), which allows solubilising enzymes in apolar solvents by an ion pairing between the protein and a surfactant, has been investigated as effective enzymatic derivatisation technique to improve the catalytic activity under homogeneous conditions in non conventional media. The results showed that the complex enzyme-surfactant was much more active both in fluorous solvents and in supercritical carbon dioxide than the native form of the enzyme. Ionic liquids, especially imidazolium salts, have been proposed some years ago as “fully green” alternative solvents; however this epithet does not take into account several “brown” aspects such as their synthesis from petro-chemical starting materials, their considerable eco-toxicity, toxicity and resistance to biodegradation, and the difficulty of clearly outline applications in which ionic liquids are really more advantageous than traditional solvents. For all of these reasons in this Thesis a critical analysis of ionic liquids has been focused on three main topics: i) alternative synthesis by introducing structural moieties which could reduce the toxicity of the most known liquid salts, and by using starting materials from renewable resources; ii) on the evaluation of their environmental impact through eco-toxicological tests (Daphnia magna and Vibrio fischeri acute toxicity tests, and algal growth inhibition), toxicity tests (MTT test, AChE inhibition and LDH release tests) and fate and rate of aerobic biodegradation in soil and water; iii) and on the demonstration of their effectiveness as reaction media in organo-catalysis and as extractive solvents in the recovery of vegetable oil from terrestrial and aquatic biomass. The results about eco-toxicity tests with Daphnia magna, Vibrio fischeri and algae, and toxicity assay using cultured cell lines, clearly indicate that the difference in toxicity between alkyl and oxygenated cations relies in differences of polarity, according to the general trend of decreasing toxicity by decreasing the lipophilicity. Independently by the biological approach in fact, all the results are in agreement, showing a lower toxicity for compounds with oxygenated lateral chains than for those having purely alkyl lateral chains. These findings indicate that an appropriate choice of cation and anion structures is important not only to design the IL with improved and suitable chemico-physical properties but also to obtain safer and eco-friendly ILs. Moreover there is a clear indication that the composition of the abiotic environment has to be taken into account when the toxicity of ILs in various biological test systems is analysed, because, for example, the data reported in the Thesis indicate a significant influence of salinity variations on algal toxicity. Aerobic biodegradation of four imidazolium ionic liquids, two alkylated and two oxygenated, in soil was evaluated for the first time. Alkyl ionic liquids were shown to be biodegradable over the 6 months test period, and in contrast no significant mineralisation was observed with oxygenated derivatives. A different result was observed in the aerobic biodegradation of alkylated and oxygenated pyridinium ionic liquids in water because all the ionic liquids were almost completely degraded after 10 days, independently by the number of oxygen in the lateral chain of the cation. The synthesis of new ionic liquids by using renewable feedstock as starting materials, has been developed through the synthesis of furan-based ion pairs from furfural. The new ammonium salts were synthesised in very good yields, good purity of the products and wide versatility, combining low melting points with high decomposition temperatures and reduced viscosities. Regarding the possible applications as surfactants and biocides, furan-based salts could be a valuable alternative to benzyltributylammonium salts and benzalkonium chloride that are produced from non-renewable resources. A new procedure for the allylation of ketones and aldehydes with tetraallyltin in ionic liquids was developed. The reaction afforded high yields both in sulfonate-containing ILs and in ILs without sulfonate upon addition of a small amount of sulfonic acid. The checked reaction resulted in peculiar chemoselectivity favouring aliphatic substrates towards aromatic ketones and good stereoselectivity in the allylation of levoglucosenone. Finally ILs-based systems could be easily and successfully recycled, making the described procedure environmentally benign. The potential role of switchable polarity solvents as a green technology for the extraction of vegetable oil from terrestrial and aquatic biomass has been investigated. The extraction efficiency of terrestrial biomass rich in triacylglycerols, as soy bean flakes and sunflower seeds, was comparable to those of traditional organic solvents, being the yield of vegetable oils recovery very similar. Switchable polarity solvents as been also exploited for the first time in the extraction of hydrocarbons from the microalga Botryococcus braunii, demonstrating the efficiency of the process for the extraction of both dried microalgal biomass and directly of the aqueous growth medium. The switchable polarity solvents exhibited better extraction efficiency than conventional solvents, both with dried and liquid samples. This is an important issue considering that the harvest and the dewatering of algal biomass have a large impact on overall costs and energy balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of lipid oxidation in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Beef and pork meat in this study were analysed. In actual fact, lipid oxidation is a major deterioration reaction in meat, meat products and results in adverse changes in the colour, flavour, texture of meat and develops different compounds which should be a risk to human health as oxysterols. On beef and pork meat, a study of lipid fraction during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and sterols content, in according to the interest that has been growing around functional food in the last years. The last part of this research was focused on the study of lipid oxidation in emulsions. In oil-in-water emulsions antioxidant activity of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was evaluated. The rates of lipid oxidation of 1.0% stripped soybean oil-in-water emulsions with DOPC were followed by monitoring lipid hydroperoxide and hexanal as indicators of primary and secondary oxidation products and the droplet surface charge or zeta potential (ζ) of the emulsions with varying concentrations of DOPC were tested. This manuscript reports the main results obtained in the three activities briefly summarized as follows: 1. study on effects of feeding composition on the photoxidative stability of lipids from beef meat, evaluated during storage under commercial retail conditions; 2. evaluation of effects of diets and storage conditions on the oxidative stability of pork meat lipids; 3. study on oxidative behavior of DOPC in stripped soybean oil-in-water emulsions stabilized by nonionic surfactant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and application of some ion-tagged catalysts in organometallic catalysis and organocatalysis. With the installation of an ionic group on the backbone of a known catalyst, two main effects are generally obtained. i) a modification of the solubility of the catalyst: if judicious choice of the ion pair is made, the ion-tag can confer to the catalyst a solubility profile suitable for catalyst recycling. ii) the ionic group can play a non-innocent role in the process considered: if stabilizing interaction between the ionic group and the developing charges in the transition state are established, the reaction can speed up. We describe the use of ion-tagged diphenylprolinol as Zn ligand. The chiral ligand grafted onto an ionic liquid (IL) was recycled 10 times with no loss of reactivity and selectivity, when it was employed in the first example of enantioselective addition of ZnEt2 to aldehydes in ILs. An ammonium-tagged phosphine displayed the capability to stabilize Pd catalysts for the Suzuki reaction in ILs. The ionic phase was recycled 6 times with no detectable loss of activity and very low Pd leaching in the organic phase. This catalytic system was also employed for the functionalization of the challenging substrate 5,11-dibromotetracene. In the field of organocatalysis, we prepared two ion-tagged derivatives of the McMillan imidazolidinone. The results of the asymmetric Diels-Alder reaction between trans-cinnamaldehyde and cyclopentadiene exhibited great dependence on the position and nature of the ionic group. Finally, when O-TMS-diphenylprolinol was tagged with an imidazolium ion, exploiting a silyl ether linker, an efficient catalyst for the asymmetric addition of aldehydes to nitroolefins was achieved. The catalyst displayed enhanced reactivity and the same high level of selectivity of the untagged parent catalyst and it could be employed in a wide range of reaction conditions, included use of water as solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the possible pathways and the mechanisms that can trigger oxylipins biosynthesis, and particularly that of short chain aldehydes and alcohols, in Lactobacillus helveticus, also in the presence of oxidative stress, using a totally labelled linoleic acid as precursor. In plants and fungi these molecules, involved in defence mechanisms against pathogens and in communication systems, derive from the oxidation of cellular unsaturated fatty acids (UFAs) and their accumulation is associated with stress exposure. Since some oxylipins are produced also by lactobacilli, it is possible to hypothesize that a metabolic pathway from UFAs to oxylipins, similar to what happens in plants and fungi, is present also in lactic acid bacteria. The results obtained pointed out that some volatile molecules are the result of UFAs catabolism, since they appear only when cells are incubated in their presence. Labelled linoleic acid is integrated in the membrane and subsequently transformed into aldehydes and alcohols, whose extent and carbon atoms number depend on stress exposure. The enzymes responsible for this metabolic pathway in plants and fungi (e.g. lipoxygenase, dioxygenase) seem to be absent in Lactobacillus helveticus and in other lactobacilli. Proteomic analyses show the over expression of many proteins, including thioredoxin reductase (part of the bacterial oxidative defence system), mainly in cells grown with linoleic acid without oxidative stress exposure, confirming that linoleic acid itself induces oxidative stress. 6 general oxidoreductases (class including dioxygenases and peroxidase) were found and therefore a deeper investigation on them could be productive in elucidating all steps involved in oxylipins biosynthesis in bacteria. Due to the multiple role of oxylipins (flavouring agents, antimicrobial compounds and interspecific signalling molecules) the identification of genes involved and regulating factors should have an important biotechnological impact, also allowing the overproduction of selected bioactive molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studies conducted during my Phd thesis were focused on two different directions: 1. In one case we tried to face some long standing problems of the asymmetric aminocatalysis as the activation of encumbered carbonyl compounds and the control of the diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one. In this section (Challenges) was described the asymmetric aziridination of ,-unsaturated ketones, the activation of ,-unsaturated -branched aldehydes and the Michael addition of oxindoles to enals and enones. For the activation via iminium ion formation of sterically demanding substrates, as ,-unsaturated ketones and ,-unsaturated -branched aldehydes, we exploited a chiral primary amine in order to overcome the problem of the iminium ion formation between the catalyst and encumbered carbonylic componds. For the control of diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one we envisaged that a suitable strategy was the Michael addition to 3 substituted oxindoles to enals activated via LUMO-lowering catalysis. In this synthetic protocol we designed a new bifunctional catalyst with an amine moiety for activate the aldehyde and a tioureidic fragment for direct the approach of the oxindole. This part of the thesis (Challenges) could be considered pure basic research, where the solution of the synthetic problem was the goal itself of the research. 2. In the other hand (Molecules) we applied our knowledge about the carbonylic compounds activation and about cascade reaction to the synthesis of three new classes of spirooxindole in enantiopure form. The construction of libraries of these bioactive compounds represented a scientific bridge between medicinal chemistry or biology and the asymmetric catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposal in my thesis has been the study of Stereoselective α-alkylation through SN1 type reaction. SN1 type reaction involves a stabilized and reactive carbocation intermediate By taking advantages of stability of particular carbocations, the use of carbocations in selective reactions has been important. In this work has been necessary to know the stability and reactivity of carbocations. And the work of Mayr group has helped to rationalize the behaviour and reactivity between the carbocations and nucleophiles by the use of Mayr’s scale of reactivity. The use of alcohols to performed the stable and reactive carbocations have been the key in my thesis. The direct nucleophilic substitution of alcohols has been a crucial scope in the field of organic synthesis, because offer a wide range of intermediates for the synthesis of natural products and pharmaceutics synthesis. In particular the catalytic nucleophilic direct substitution of alcohols represents a novel methodology for the preparation of a variety of derivatives, and water only as the sub-product in the reaction. The stereochemical control of the transformation C-H bond into stereogenic C-C bond adjacent to carbonyl functionalized has been studied for asymmetric catalysis. And the field of organocatalysis has introduced the use of small organic molecule as catalyst for stereoselective transformations. Merging these two concepts Organocatalysis and Mayr’s scale, my thesis has developed a new approach for the α-alkylation of aldehydes and ketones through SN1 type reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the course of my Ph.D. in the laboratories directed by Prof. Alfredo Ricci at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, I was involved in the study and the application of a number of organocatalytic systems, all coming from the natural chiral pool. The first part of this thesis will be devoted to new homogeneous organocatalytic reactions promoted by Cinchona alkaloid-based organocatalysts. Quinine based catalysts were found to be a very effective catalyst for Diels-Alder reactions involving 3-vinylindoles. Excellent results in terms of yields and enantioselectivities were achieved, outlining also a remarkable organocatalytic operational mode mimicking enzymatic catalysis. The same reaction with 2-vinylindoles showed a completely different behaviour resulting in an unusual resolution-type process. The asymmetric formal [3+2] cycloaddition with in situ generated N-carbamoyl nitrones using Cinchona-derived quaternary ammonium salts as versatile catalysts under phase transfer conditions, outlines another application in organocatalysis of this class of alkaloids. During the seven months stage in the Prof. Helma Wennemers’ group at the Department of Chemistry of the University of Basel (Switzerland) I have been involved in organocatalysis promoted by oligopeptides. My contribution regarded the 1,4-addition reaction of aldehydes to nitroolefins. In the work performed at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, in collaboration with the ‘Institut Charles Gerhardt-Montpellier, of Montpellier (France) the possibility of performing for the first time heterogeneous organocatalysis by using a natural polysaccharide biopolymer as the source of chirality was disclosed. With chitosan, derived from deacetylation of chitin, a highly enantioselective heterogeneous organocatalytic aldol reaction could be performed. The use of an eco-friendly medium such as water, the recyclability of the catalytic specie and the renewable nature of the polysaccharide are assets of this new approach in organocatalysis and open interesting perspectives for the use of biopolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il progetto di ricerca di questa tesi è stato focalizzato sulla sintesi di tre classi di molecole: β-lattami, Profeni e α-amminonitrili, utilizzando moderne tecniche di sintesi organica, metodologie ecosostenibili e strategie biocatalitiche. I profeni sono una categoria di antiinfiammatori molto diffusa e in particolare abbiamo sviluppato e ottimizzato una procedura in due step per ottenere (S)-Profeni da 2-arilpropanali raceme. Il primo step consiste in una bioriduzione delle aldeidi per dare i relativi (S)-2-Aril Propanoli tramite un processo DKR mediato dall’enzima Horse Liver Alcohol Dehydrogenase. Il secondo, l’ossidazione a (S)-Profeni, è promossa da NaClO2 e TEMPO come catalizzatore. Con lo scopo di migliorare il processo, in collaborazione con il gruppo di ricerca di Francesca Paradisi all’University College Dublino abbiamo immobilizzato l’enzima HLADH, ottenendo buone rese e una migliore enantioselettività. Abbiamo inoltre proposto un interessante approccio enzimatico per l’ossidazione degli (S)-2-Aril Propanoli utilizzando una laccasi da Trametes Versicolor. L’anello β-lattamico è un eterociclo molto importante, noto per essere un interessante farmacoforo. Abbiamo sintetizzato nuovi N-metiltio beta-lattami, che hanno mostrato un’attività antibatterica molto interessante contro ceppi resistenti di Staphilococcus Aureus prelevati da pazienti affetti da fibrosis cistica. Abbiamo poi coniugato gruppi polifenolici a questi nuovi β-lattami ottenendo molecule antiossidanti e antibatteriche, cioè con attività duale. Abbiamo poi sintetizzato un nuovo ibrido retinoide-betalattame che ha indotto differenziazione si cellule di neuroblastoma. Abbiamo poi sfruttato la reazione di aperture dell’anello monobattamico tramite enzimi idrolitici, con lo scopo di ottenere β-amminoacidi chirali desimmetrizzati come il monoestere dell’acido β–amminoglutammico. Per quando riguarda gli α-amminonitrili, è stato sviluppato un protocollo di Strecker. Le reazioni sono state molto efficienti utilizzando come fonte di cianuro l’acetone cianidrina in acqua, utilizzando differenti aldeidi e chetoni, ammine primarie e secondarie. Per mettere a punto una versione asimmetrica del protocollo, abbiamo usato ammine chirali con lo scopo di ottenere nuovi α-amminonitrili chirali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to match the more stringent environmental regulations, heterogenization of traditional homogeneous processes is one of the main challenges of the modern chemical industry. Great results have been achieved in the fields of petrochemicals and base chemicals, whereas in fine chemical industry most of the synthetic procedures are based on multistep processes catalyzed by homogeneous catalysts mainly used in stoichiometric amounts. In the fine chemicals manufacture not so much efforts have been devoted to the investigation of suitable solid catalysts for the development of greener processes, then this sector represent a very attractive field of research. In this context, the present work deals with the extensive investigation of the possibility to heterogenize existing processes, in particular two different classes of reactions have been studied: alkylation of aromatic and heteroaromatic compounds and selective oxidation of aromatic alcohols. Traditional solid acid catalysts, such as zeolites, clays and alumina have been tested in the gas phase alkylation of 1,2-methylendioxybenzene, core building block of many drugs, pesticides and fragrances. The observed reactivity were clarified through a deep FTIR investigation complemented by ab initio calculation. The same catalysts were tested in the gas phase isopropylation of thiophene with the aim of clearly attribute the role of the reaction parameters in the reaction proceeding and verify the possibility to enhance the selectivity of one of the two possible isomers. Finally various Au/CeO2 catalysts were tested in the synthesis of benzaldehyde and piperonal, two aldehydes largely employed in the manufacture of fine chemical products, through liquid phase oxidation of the corresponding alcohols in very mild conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear and macrocyclic nitrogen ligands have been found wide application during the years. Nitrogen has a much strong association with transition-metal ions because the electron pair is partucularly available for complexing purposes. We started our investigation with the synthesis of new chiral perazamacrocycles containing four pyrrole rings. This ligand was synthesized by the [2+2]condensation of (R,R)-diaminocyclohexane and dipirranedialdehydes and was tested, after a complexation with Cu(OAc)2, in Henry reactions. The best yields (96%) and higher ee’s (96%) were obtained when the meso-substituent on the dipyrrandialdehyde was a methyl group. The positive influence of the pyrrole-containing macrocyclic structure on the efficiency/enantioselectivity of the catalytic system was demonstrated by comparison with the Henry reactions performed using analogous ligands. Henry product was obtain in good yield but only 73% of ee, when the dialdehyde unit was replaced by a triheteroaromatic dialdehye (furan-pyrrol-furan). Another well known macrocyclic ligand is calix[4]pyrrole. We decided to investigate, in collaboration with Neier’s group, the metal-coordinating properties of calix[2]pyrrole[2]pyrrolidine compounds obtained by the reduction of calix[4]pyrrole. We focused our attention on the reduction conditions, and tested different Pd supported (charcoal, grafite) catalysts at different condition. Concerning the synthesis of linear polyamine ligands. We focused our attention to the synthesis of 2-heteroaryl- and 2,5-diheteroarylpyrrolidines. The reductive amination reaction of diarylketones and aryl-substitutedketo-aldehydes with different chiral amines was exploited to prepare a small library of diastereo-enriched substituted pyrrolidines. We have also described a new synthetic route to 1,2-disubstituted 1,2,3,4-tetrahydropyrrole[1,2-a]pyrazines, which involves the diastereoselective addition of Grignard reagents to chiral oxazolidines. The best diastereoselectivity (98:2) was dependent on the nature of both the chiral auxiliary, (S)-1-phenylglycinol, and the nature of the organometallic reagent (MeMgBr).