9 resultados para agent based modeling
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Interaction protocols establish how different computational entities can interact with each other. The interaction can be finalized to the exchange of data, as in 'communication protocols', or can be oriented to achieve some result, as in 'application protocols'. Moreover, with the increasing complexity of modern distributed systems, protocols are used also to control such a complexity, and to ensure that the system as a whole evolves with certain features. However, the extensive use of protocols has raised some issues, from the language for specifying them to the several verification aspects. Computational Logic provides models, languages and tools that can be effectively adopted to address such issues: its declarative nature can be exploited for a protocol specification language, while its operational counterpart can be used to reason upon such specifications. In this thesis we propose a proof-theoretic framework, called SCIFF, together with its extensions. SCIFF is based on Abductive Logic Programming, and provides a formal specification language with a clear declarative semantics (based on abduction). The operational counterpart is given by a proof procedure, that allows to reason upon the specifications and to test the conformance of given interactions w.r.t. a defined protocol. Moreover, by suitably adapting the SCIFF Framework, we propose solutions for addressing (1) the protocol properties verification (g-SCIFF Framework), and (2) the a-priori conformance verification of peers w.r.t. the given protocol (AlLoWS Framework). We introduce also an agent based architecture, the SCIFF Agent Platform, where the same protocol specification can be used to program and to ease the implementation task of the interacting peers.
Resumo:
Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
Biomedical analyses are becoming increasingly complex, with respect to both the type of the data to be produced and the procedures to be executed. This trend is expected to continue in the future. The development of information and protocol management systems that can sustain this challenge is therefore becoming an essential enabling factor for all actors in the field. The use of custom-built solutions that require the biology domain expert to acquire or procure software engineering expertise in the development of the laboratory infrastructure is not fully satisfactory because it incurs undesirable mutual knowledge dependencies between the two camps. We propose instead an infrastructure concept that enables the domain experts to express laboratory protocols using proper domain knowledge, free from the incidence and mediation of the software implementation artefacts. In the system that we propose this is made possible by basing the modelling language on an authoritative domain specific ontology and then using modern model-driven architecture technology to transform the user models in software artefacts ready for execution in a multi-agent based execution platform specialized for biomedical laboratories.
Resumo:
The advent of distributed and heterogeneous systems has laid the foundation for the birth of new architectural paradigms, in which many separated and autonomous entities collaborate and interact to the aim of achieving complex strategic goals, impossible to be accomplished on their own. A non exhaustive list of systems targeted by such paradigms includes Business Process Management, Clinical Guidelines and Careflow Protocols, Service-Oriented and Multi-Agent Systems. It is largely recognized that engineering these systems requires novel modeling techniques. In particular, many authors are claiming that an open, declarative perspective is needed to complement the closed, procedural nature of the state of the art specification languages. For example, the ConDec language has been recently proposed to target the declarative and open specification of Business Processes, overcoming the over-specification and over-constraining issues of classical procedural approaches. On the one hand, the success of such novel modeling languages strongly depends on their usability by non-IT savvy: they must provide an appealing, intuitive graphical front-end. On the other hand, they must be prone to verification, in order to guarantee the trustworthiness and reliability of the developed model, as well as to ensure that the actual executions of the system effectively comply with it. In this dissertation, we claim that Computational Logic is a suitable framework for dealing with the specification, verification, execution, monitoring and analysis of these systems. We propose to adopt an extended version of the ConDec language for specifying interaction models with a declarative, open flavor. We show how all the (extended) ConDec constructs can be automatically translated to the CLIMB Computational Logic-based language, and illustrate how its corresponding reasoning techniques can be successfully exploited to provide support and verification capabilities along the whole life cycle of the targeted systems.
Resumo:
Actual trends in software development are pushing the need to face a multiplicity of diverse activities and interaction styles characterizing complex and distributed application domains, in such a way that the resulting dynamics exhibits some grade of order, i.e. in terms of evolution of the system and desired equilibrium. Autonomous agents and Multiagent Systems are argued in literature as one of the most immediate approaches for describing such a kind of challenges. Actually, agent research seems to converge towards the definition of renewed abstraction tools aimed at better capturing the new demands of open systems. Besides agents, which are assumed as autonomous entities purposing a series of design objectives, Multiagent Systems account new notions as first-class entities, aimed, above all, at modeling institutional/organizational entities, placed for normative regulation, interaction and teamwork management, as well as environmental entities, placed as resources to further support and regulate agent work. The starting point of this thesis is recognizing that both organizations and environments can be rooted in a unifying perspective. Whereas recent research in agent systems seems to account a set of diverse approaches to specifically face with at least one aspect within the above mentioned, this work aims at proposing a unifying approach where both agents and their organizations can be straightforwardly situated in properly designed working environments. In this line, this work pursues reconciliation of environments with sociality, social interaction with environment based interaction, environmental resources with organizational functionalities with the aim to smoothly integrate the various aspects of complex and situated organizations in a coherent programming approach. Rooted in Agents and Artifacts (A&A) meta-model, which has been recently introduced both in the context of agent oriented software engineering and programming, the thesis promotes the notion of Embodied Organizations, characterized by computational infrastructures attaining a seamless integration between agents, organizations and environmental entities.