22 resultados para Weapons of Mass Destruction

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’ermeneutica filosofica di Hans-Georg Gadamer – indubbiamente uno dei capisaldi del pensiero novecentesco – rappresenta una filosofia molto composita, sfaccettata e articolata, per così dire formata da una molteplicità di dimensioni diverse che si intrecciano l’una con l’altra. Ciò risulta evidente già da un semplice sguardo alla composizione interna della sua opera principale, Wahrheit und Methode (1960), nella quale si presenta una teoria del comprendere che prende in esame tre differenti dimensioni dell’esperienza umana – arte, storia e linguaggio – ovviamente concepite come fondamentalmente correlate tra loro. Ma questo quadro d’insieme si complica notevolmente non appena si prendano in esame perlomeno alcuni dei numerosi contributi che Gadamer ha scritto e pubblicato prima e dopo il suo opus magnum: contributi che testimoniano l’importante presenza nel suo pensiero di altre tematiche. Di tale complessità, però, non sempre gli interpreti di Gadamer hanno tenuto pienamente conto, visto che una gran parte dei contributi esegetici sul suo pensiero risultano essenzialmente incentrati sul capolavoro del 1960 (ed in particolare sui problemi della legittimazione delle Geisteswissenschaften), dedicando invece minore attenzione agli altri percorsi che egli ha seguito e, in particolare, alla dimensione propriamente etica e politica della sua filosofia ermeneutica. Inoltre, mi sembra che non sempre si sia prestata la giusta attenzione alla fondamentale unitarietà – da non confondere con una presunta “sistematicità”, da Gadamer esplicitamente respinta – che a dispetto dell’indubbia molteplicità ed eterogeneità del pensiero gadameriano comunque vige al suo interno. La mia tesi, dunque, è che estetica e scienze umane, filosofia del linguaggio e filosofia morale, dialogo con i Greci e confronto critico col pensiero moderno, considerazioni su problematiche antropologiche e riflessioni sulla nostra attualità sociopolitica e tecnoscientifica, rappresentino le diverse dimensioni di un solo pensiero, le quali in qualche modo vengono a convergere verso un unico centro. Un centro “unificante” che, a mio avviso, va individuato in quello che potremmo chiamare il disagio della modernità. In altre parole, mi sembra cioè che tutta la riflessione filosofica di Gadamer, in fondo, scaturisca dalla presa d’atto di una situazione di crisi o disagio nella quale si troverebbero oggi il nostro mondo e la nostra civiltà. Una crisi che, data la sua profondità e complessità, si è per così dire “ramificata” in molteplici direzioni, andando ad investire svariati ambiti dell’esistenza umana. Ambiti che pertanto vengono analizzati e indagati da Gadamer con occhio critico, cercando di far emergere i principali nodi problematici e, alla luce di ciò, di avanzare proposte alternative, rimedi, “correttivi” e possibili soluzioni. A partire da una tale comprensione di fondo, la mia ricerca si articola allora in tre grandi sezioni dedicate rispettivamente alla pars destruens dell’ermeneutica gadameriana (prima e seconda sezione) ed alla sua pars costruens (terza sezione). Nella prima sezione – intitolata Una fenomenologia della modernità: i molteplici sintomi della crisi – dopo aver evidenziato come buona parte della filosofia del Novecento sia stata dominata dall’idea di una crisi in cui verserebbe attualmente la civiltà occidentale, e come anche l’ermeneutica di Gadamer possa essere fatta rientrare in questo discorso filosofico di fondo, cerco di illustrare uno per volta quelli che, agli occhi del filosofo di Verità e metodo, rappresentano i principali sintomi della crisi attuale. Tali sintomi includono: le patologie socioeconomiche del nostro mondo “amministrato” e burocratizzato; l’indiscriminata espansione planetaria dello stile di vita occidentale a danno di altre culture; la crisi dei valori e delle certezze, con la concomitante diffusione di relativismo, scetticismo e nichilismo; la crescente incapacità a relazionarsi in maniera adeguata e significativa all’arte, alla poesia e alla cultura, sempre più degradate a mero entertainment; infine, le problematiche legate alla diffusione di armi di distruzione di massa, alla concreta possibilità di una catastrofe ecologica ed alle inquietanti prospettive dischiuse da alcune recenti scoperte scientifiche (soprattutto nell’ambito della genetica). Una volta delineato il profilo generale che Gadamer fornisce della nostra epoca, nella seconda sezione – intitolata Una diagnosi del disagio della modernità: il dilagare della razionalità strumentale tecnico-scientifica – cerco di mostrare come alla base di tutti questi fenomeni egli scorga fondamentalmente un’unica radice, coincidente peraltro a suo giudizio con l’origine stessa della modernità. Ossia, la nascita della scienza moderna ed il suo intrinseco legame con la tecnica e con una specifica forma di razionalità che Gadamer – facendo evidentemente riferimento a categorie interpretative elaborate da Max Weber, Martin Heidegger e dalla Scuola di Francoforte – definisce anche «razionalità strumentale» o «pensiero calcolante». A partire da una tale visione di fondo, cerco quindi di fornire un’analisi della concezione gadameriana della tecnoscienza, evidenziando al contempo alcuni aspetti, e cioè: primo, come l’ermeneutica filosofica di Gadamer non vada interpretata come una filosofia unilateralmente antiscientifica, bensì piuttosto come una filosofia antiscientista (il che naturalmente è qualcosa di ben diverso); secondo, come la sua ricostruzione della crisi della modernità non sfoci mai in una critica “totalizzante” della ragione, né in una filosofia della storia pessimistico-negativa incentrata sull’idea di un corso ineluttabile degli eventi guidato da una razionalità “irrazionale” e contaminata dalla brama di potere e di dominio; terzo, infine, come la filosofia di Gadamer – a dispetto delle inveterate interpretazioni che sono solite scorgervi un pensiero tradizionalista, autoritario e radicalmente anti-illuminista – non intenda affatto respingere l’illuminismo scientifico moderno tout court, né rinnegarne le più importanti conquiste, ma più semplicemente “correggerne” alcune tendenze e recuperare una nozione più ampia e comprensiva di ragione, in grado di render conto anche di quegli aspetti dell’esperienza umana che, agli occhi di una razionalità “limitata” come quella scientista, non possono che apparire come meri residui di irrazionalità. Dopo aver così esaminato nelle prime due sezioni quella che possiamo definire la pars destruens della filosofia di Gadamer, nella terza ed ultima sezione – intitolata Una terapia per la crisi della modernità: la riscoperta dell’esperienza e del sapere pratico – passo quindi ad esaminare la sua pars costruens, consistente a mio giudizio in un recupero critico di quello che egli chiama «un altro tipo di sapere». Ossia, in un tentativo di riabilitazione di tutte quelle forme pre- ed extra-scientifiche di sapere e di esperienza che Gadamer considera costitutive della «dimensione ermeneutica» dell’esistenza umana. La mia analisi della concezione gadameriana del Verstehen e dell’Erfahrung – in quanto forme di un «sapere pratico (praktisches Wissen)» differente in linea di principio da quello teorico e tecnico – conduce quindi ad un’interpretazione complessiva dell’ermeneutica filosofica come vera e propria filosofia pratica. Cioè, come uno sforzo di chiarificazione filosofica di quel sapere prescientifico, intersoggettivo e “di senso comune” effettivamente vigente nella sfera della nostra Lebenswelt e della nostra esistenza pratica. Ciò, infine, conduce anche inevitabilmente ad un’accentuazione dei risvolti etico-politici dell’ermeneutica di Gadamer. In particolare, cerco di esaminare la concezione gadameriana dell’etica – tenendo conto dei suoi rapporti con le dottrine morali di Platone, Aristotele, Kant e Hegel – e di delineare alla fine un profilo della sua ermeneutica filosofica come filosofia del dialogo, della solidarietà e della libertà.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this proposal is to offer an alternative perspective on the study of Cold War, since insufficient attention is usually paid to those organizations that mobilized against the development and proliferation of nuclear weapons. The antinuclear movement began to mobilize between the 1950s and the 1960s, when it finally gained the attention of public opinion, and helped to build a sort of global conscience about nuclear bombs. This was due to the activism of a significant part of the international scientific community, which offered powerful intellectual and political legitimization to the struggle, and to the combined actions of the scientific and organized protests. This antinuclear conscience is something we usually tend to consider as a fait accompli in contemporary world, but the question is to show its roots, and the way it influenced statesmen and political choices during the period of nuclear confrontation of the early Cold War. To understand what this conscience could be and how it should be defined, we have to look at the very meaning of the nuclear weapons that has deeply modified the sense of war. Nuclear weapons seemed to be able to destroy human beings everywhere with no realistic forms of control of the damages they could set off, and they represented the last resource in the wide range of means of mass destruction. Even if we tend to consider this idea fully rational and incontrovertible, it was not immediately born with the birth of nuclear weapons themselves. Or, better, not everyone in the world did immediately share it. Due to the particular climate of Cold War confrontation, deeply influenced by the persistence of realistic paradigms in international relations, British and U.S. governments looked at nuclear weapons simply as «a bullet». From the Trinity Test to the signature of the Limited Test Ban Treaty in 1963, many things happened that helped to shift this view upon nuclear weapons. First of all, more than ten years of scientific protests provided a more concerned knowledge about consequences of nuclear tests and about the use of nuclear weapons. Many scientists devoted their social activities to inform public opinion and policy-makers about the real significance of the power of the atom and the related danger for human beings. Secondly, some public figures, as physicists, philosophers, biologists, chemists, and so on, appealed directly to the human community to «leave the folly and face reality», publicly sponsoring the antinuclear conscience. Then, several organizations leaded by political, religious or radical individuals gave to this protests a formal structure. The Campaign for Nuclear Disarmament in Great Britain, as well as the National Committee for a Sane Nuclear Policy in the U.S., represented the voice of the masses against the attempts of governments to present nuclear arsenals as a fundamental part of the international equilibrium. Therefore, the antinuclear conscience could be defined as an opposite feeling to the development and the use of nuclear weapons, able to create a political issue oriented to the influence of military and foreign policies. Only taking into consideration the strength of this pressure, it seems possible to understand not only the beginning of nuclear negotiations, but also the reasons that permitted Cold War to remain cold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfluoroalkylated substances are a group of chemicals that have been largely employed during the last 60 years in several applications, widely spreading and accumulating in the environment due to their extreme resistance to degradation. As a consequence, they have been found also in various types of food as well as in drinking water, proving that they can easily reach humans through the diet. The available information concerning their adverse effects on health has recently increased the interest towards these contaminants and highlighted the importance of investigating all the potential sources of human exposure, among which diet was proved to be the most relevant. This need has been underlined by the European Union through Recommendation 2010/161/EU: in this document, Member States were called to monitor their presence of in food, producing accurate estimations of human exposure. The purpose of the research presented in this thesis, which is the result of a partnership between an Italian and a French laboratory, was to develop reliable tools for the analysis of these pollutants in food, to be used for generating data on potentially contaminated matrices. An efficient method based on liquid chromatography-mass spectrometry for the detection of 16 different perfluorinated compounds in milk has been validated in accordance with current European regulation guidelines (2002/657/EC) and is currently under evaluation for ISO 17025 accreditation. The proposed technique was applied to cow, powder and human breast milk samples from Italy and France to produce a preliminary monitoring on the presence of these contaminants. In accordance with the above mentioned European Recommendation, this project led also to the development of a promising technique for the quantification of some precursors of these substances in fish. This method showed extremely satisfying performances in terms of linearity and limits of detection, and will be useful for future surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, we study the accretion of mass and angular momentum onto the disc of spiral galaxies from a global and a local perspective and comparing theory predictions with several observational data. First, we propose a method to measure the specific mass and radial growth rates of stellar discs, based on their star formation rate density profiles and we apply it to a sample of nearby spiral galaxies. We find a positive radial growth rate for almost all galaxies in our sample. Our galaxies grow in size, on average, at one third of the rate at which they grow in mass. Our results are in agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time. We also propose a novel method to reconstruct accretion profiles and the local angular momentum of the accreting material from the observed structural and chemical properties of spiral galaxies. Applied to the Milky Way and to one external galaxy, our analysis indicates that accretion occurs at relatively large radii and has a local deficit of angular momentum with respect to the disc. Finally, we show how structure and kinematics of hot gaseous coronae, which are believed to be the source of mass and angular momentum of massive spiral galaxies, can be reconstructed from their angular momentum and entropy distributions. We find that isothermal models with cosmologically motivated angular momentum distributions are compatible with several independent observational constraints. We also consider more complex baroclinic equilibria: we describe a new parametrization for these states, a new self-similar family of solution and a method for reconstructing structure and kinematics from the joint angular momentum/entropy distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen design is generally driven by the need to obtain enhanced stability,efficiency and safety in vaccines.Unfortunately,the antigen modification is rarely proceeded in parallel with analytical tools development characterization.The analytical tools set up is required during steps of vaccine manufacturing pipeline,for vaccine production modifications,improvements or regulatory requirements.Despite the relevance of bioconjugate vaccines,robust and consistent analytical tools to evaluate the extent of carrier glycosylation are missing.Bioconjugation is a glycoengineering technology aimed to produce N-glycoprotein in vivo in E.coli cells,based on the PglB-dependent system by C. jejuni,applied for production of several glycoconjugate vaccines.This applicability is due to glycocompetent E. coli ability to produce site-selective glycosylated protein used,after few purification steps, as vaccines able to elicit both humoral and cell-mediate immune-response.Here, S.aureus Hla bioconjugated with CP5 was used to perform rational analytical-driven design of the glycosylation sites for the glycosylation extent quantification by Mass Spectrometry.The aim of the study was to develop a MS-based approach to quantify the glycosylation extent for in-process monitoring of bioconjugate production and for final product characterization.The three designed consensus sequences differ for a single amino-acid residue and fulfill the prerequisites for engineered bioconjugate more appropriate from an analytical perspective.We aimed to achieve an optimal MS detectability of the peptide carrying the consensus sequences,complying with the well-characterized requirements for N-glycosylation by PglB.Hla carrier isoforms,bearing these consensus sequences allowed a recovery of about 20 ng/μg of periplasmic protein glycosylated at 40%.The SRM-MS here developed was successfully applied to evaluate the differential site occupancy when carrier protein present two glycosites.The glycosylation extent in each glycosite was determined and the difference in the isoforms were influenced either by the overall source of protein produced and by the position of glycosite insertion.The analytical driven design of the bioconjugated antigen and the development of accurate,precise and robust analytical method allowed to finely characterize the vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the goal of studying ML along the RGB, mid-IR observations of a carefully selected sample of 17 Galactic globular clusters (GGCs) with different metallicity and horizontal branch (HB) morphology have been secured with IRAC on board Spitzer: a global sample counting about 8000 giant has been obtained. Suitable complementary photometry in the optical and near-IR has been also secured in order to properly characterize the stellar counterparts to the Spitzer sources and their photospheric parameters. Stars with color (i.e. dust) excess have been identified, their likely circumstellar emission quantified and modelled, and empirical estimates of mass loss rates and timescales obtained. We find that mass loss rates increases with increasing stellar luminosity and decreasing metallicity. For a given luminosity, we find that ML rates are systematically higher than the prediction by extrapolating the Reimers law. CMDs constructed from ground based near-IR and IRAC bands show that at a given luminosity some stars have dusty envelopes and others do not. From this, we deduce that the mass loss is episodic and is ``on'' for some fraction of the time. The total mass lost on the RGB can be easily computed by multiplying ML rates by the ML timescales and integrating over the evolutionary timescale. The average total mass lost moderately increases with increasing metallicity, and for a given metallicity is systematically higher in clusters with extended blue HB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the maturation process that occurs to a protein is of pivotal importance for the understanding of its function. This is true also in the vaccine field but in this case is also important to evaluate if inappropriate protein conformation and maturation play roles in the impairment of the functional immunogenicity of protein vaccines. Mass spectrometry (MS) is the method of choice for the study of the maturation process since each modification that occurs during the maturation will lead to a change in the mass of the entire protein. Therefore the aim of my thesis is the development of mass spectrometry-based approaches to study the maturation of proteins and the application of these methods to proteic vaccine candidates. The thesis is divided in two main parts. In the first part, I focused my attention on the study of the maturation of different vaccine candidates using native mass spectrometry. The analyses in this case have been performed using recombinant proteins produced in E. coli. In the second part I applied different MS strategies for the identification of unknown PTMs on pathogenic bacteria surface proteins since modified surface proteins are now considered for vaccine candidate selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of mass transport in polymeric membranes has grown in importance due to its potential application in many processes such as separation of gases and vapors, packaging, controlled drug release. The diffusion of a low molecular weight species in a polymer is often accompanied by other phenomena like swelling, reactions, stresses, that have not been investigated in all their aspects yet. Furthermore, novel materials have been developed that include inorganic fillers, reactive functional groups or ions, that make the scenery even more complicated. The present work focused on the experimental study of systems where the diffusion is accompanied by other processes; suitable models were also developed to describe the particular circumstances in order to understand the underlying concepts and be able to design the performances of the material. The effect of solvent-induced deformation in polymeric films during sorption processes was studied since the dilation, especially in constrained membranes, can cause the development of stresses and therefore early failures of the material. The bending beam technique was used to test the effects of the dilation and the stress induced in the polymer by penetrant diffusion. A model based on the laminate theory was developed that accounts for the swelling and is able to predict the stress that raise in the material. The addition of inorganic fillers affects the transport properties of polymeric films. Mixed matrix membranes based on fluorinated, high free volume matrices show attractive performances for separation purposes but there is a need for deeper investigation of the selectivity properties towards gases and vapors. A new procedure based on the NELF model was tested on the experimental data; it allows to predict solubility of every penetrant on the basis of data for one vapor. The method has proved to be useful also for the determination of the diffusion coefficient and for an estimation of the permeability in the composite materials. Oxygen scavenging systems can overcome lack of barrier properties in common polymers that forbids their application in sensitive applications as food packaging. The final goal of obtaining a membrane almost impermeable to oxygen leads to experimental times out of reach. Hence, a simple model was developed in order to describe the transport of oxygen in a membrane with also reactive groups and analyze the experimental data collected on SBS copolymers that show attractive scavenging capacity. Furthermore, a model for predicting the oxygen barrier behavior of a film formed as a blend of OSP in a common packaging material was built, considering particles capable of reactions with oxygen embedded in a non-reactive matrix. Perfluorosulphonic acid ionomers (PFSI) are capturing attention due to a high thermal and chemical resistance coupled with very peculiar transport properties, that make them appropriate to be used in fuel cells. The possible effect of different formation procedure was studied together with the swelling due to water sorption since both water uptake and dilation can dramatically affect the fuel cells performances. The water diffusion and sorption was studied with a FTIR-ATR spectrometer that can give deeper information on the bonds between water molecules and the sulphonic hydrophilic groups and, therefore, on the microstructure of the hydrated ionomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sports biomechanics describes human movement from a performance enhancement and an injury reduction perspective. In this respect, the purpose of sports scientists is to support coaches and physicians with reliable information about athletes’ technique. The lack of methods allowing for in-field athlete evaluation as well as for accurate joint force estimates represents, to date, the main limitation to this purpose. The investigations illustrated in the present thesis aimed at providing a contribution towards the development of the above mentioned methods. Two complementary approaches were adopted: a Low Resolution Approach – related to performance assessment – where the use of wearable inertial measurement units is exploited during different phases of sprint running, and a High Resolution Approach – related to joint kinetics estimate for injury prevention – where subject-specific, non-rigid constraints for knee joint kinematic modelling used in multi-body optimization techniques are defined. Results obtained using the Low Resolution Approach indicated that, due to their portability and inexpensiveness, inertial measurement systems are a valid alternative to laboratory-based instrumentation for in-field performance evaluation of sprint running. Using acceleration and angular velocity data, the following quantities were estimated: trunk inclination and angular velocity, instantaneous horizontal velocity and displacement of a point approximating the centre of mass, and stride and support phase durations. As concerns the High Resolution Approach, results indicated that the length of the anterior cruciate and lateral collateral ligaments decreased, while that of the deep bundle of the medial collateral ligament increased significantly during flexion. Variations of the posterior cruciate and the superficial bundle of the medial collateral ligament lengths were concealed by the experimental indeterminacy. A mathematical model was provided that allowed the estimate of subject-specific ligament lengths as a function of knee flexion and that can be integrated in a multi-body optimization procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main work of this thesis concerns the measurement of the production cross section using LHC 2011 data collected at a center-of-mass energy equal to 7 TeV by the ATLAS detector and resulting in a total integrated luminosity of 4.6 inverse fb. The ZZ total cross section is finally compared with the NLO prediction calculated with modern Monte Carlo generators. In addition, the three differential distributions (∆φ(l,l), ZpT and M4l) are shown unfolded back to the underlying distributions using a Bayesian iterative algorithm. Finally, the transverse momentum of the leading Z is used to provide limits on anoumalus triple gauge couplings forbidden in the Standard Model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis presents two measurements of differential production cross section of top and anti-top pairs tt ̅ decaying in a lepton+jets final state. The normalize cross section is measured as a function of the top transverse momentum and the tt ̅ mass, transverse momentum and rapidity using the full 2011 proton-proton (pp) ATLAS data taking at a center of mass energy of √s=7 TeV and corresponding to an integrated luminosity of L=4.6 〖fb〗^(-1). The cross section is also measured at the particle level as a function of the hadronic top transverse momentum for highly energetic events using the full 2012 data taking at √s=8 TeV and with L=20 〖fb〗^(-1). The measured spectra are fully corrected for detector efficiency and resolution effects and are compared to several theoretical predictions showing a quite good agreement, depending on different spectra.