13 resultados para Underwater bio-acoustic event detection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This study provides a comprehensive genetic overview on the endangered Italian wolf population. In particular, it focuses on two research lines. On one hand, we focalised on melanism in wolf in order to isolate a mutation related with black coat colour in canids. With several reported black individuals (an exception at European level), the Italian wolf population constituted a challenging research field posing many unanswered questions. As found in North American wolf, we reported that melanism in the Italian population is caused by a different melanocortin pathway component, the K locus, in which a beta-defensin protein acts as an alternative ligand for the Mc1r. This research project was conducted in collaboration with Prof. Gregory Barsh, Department of Genetics and Paediatrics, Stanford University. On the other hand, we performed analysis on a high number of SNPs thanks to a customized Canine microarray useful to integrate or substitute the STR markers for genotyping individuals and detecting wolf-dog hybrids. Thanks to DNA microchip technology, we obtained an impressive amount of genetic data which provides a solid base for future functional genomic studies. This study was undertaken in collaboration with Prof. Robert K. Wayne, Department of Ecology and Evolutionary Biology, University of California, Los Angeles (UCLA).
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.
Resumo:
Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal, enabling the development of cheap, small, portable and simple devices, that allow multiplex and real-time detection. At the same time nanobiotechnology is drastically revolutionizing the biosensors development and different transduction strategies exploit concepts developed in these field to simplify the analysis operations for operators and end users, offering higher specificity, higher sensitivity, higher operational stability, integrated sample treatments and shorter analysis time. The aim of this PhD work has been the application of nanobiotechnological strategies to electrochemical biosensors for the detection of biological macromolecules. Specifically, one project was focused on the application of a DNA nanotechnology called hybridization chain reaction (HCR), to amplify the hybridization signal in an electrochemical DNA biosensor. Another project on which the research activity was focused concerns the development of an electrochemical biosensor based on a biological model membrane anchored to a solid surface (tBLM), for the recognition of interactions between the lipid membrane and different types of target molecules.
Resumo:
The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.
Resumo:
Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic.
Resumo:
Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.
Resumo:
The language connectome was in-vivo investigated using multimodal non-invasive quantitative MRI. In PPA patients (n=18) recruited by the IRCCS ISNB, Bologna, cortical thickness measures showed a predominant reduction on the left hemisphere (p<0.005) with respect to matched healthy controls (HC) (n=18), and an accuracy of 86.1% in discrimination from Alzheimer’s disease patients (n=18). The left temporal and para-hippocampal gyri significantly correlated (p<0.01) with language fluency. In PPA patients (n=31) recruited by the Northwestern University Chicago, DTI measures were longitudinally evaluated (2-years follow-up) under the supervision of Prof. M. Catani, King’s College London. Significant differences with matched HC (n=27) were found, tract-localized at baseline and widespread in the follow-up. Language assessment scores correlated with arcuate (AF) and uncinate (UF) fasciculi DTI measures. In left-ischemic stroke patients (n=16) recruited by the NatBrainLab, King’s College London, language recovery was longitudinally evaluated (6-months follow-up). Using arterial spin labelling imaging a significant correlation (p<0.01) between language recovery and cerebral blood flow asymmetry, was found in the middle cerebral artery perfusion, towards the right. In HC (n=29) recruited by the DIBINEM Functional MR Unit, University of Bologna, an along-tract algorithm was developed suitable for different tractography methods, using the Laplacian operator. A higher left superior temporal gyrus and precentral operculum AF connectivity was found (Talozzi L et al., 2018), and lateralized UF projections towards the left dorsal orbital cortex. In HC (n=50) recruited in the Human Connectome Project, a new tractography-driven approach was developed for left association fibres, using a principal component analysis. The first component discriminated cortical areas typically connected by the AF, suggesting a good discrimination of cortical areas sharing a similar connectivity pattern. The evaluation of morphological, microstructural and metabolic measures could be used as in-vivo biomarkers to monitor language impairment related to neurodegeneration or as surrogate of cognitive rehabilitation/interventional treatment efficacy.
Resumo:
The aim of the present study is to apply a broad range of techniques to increase the knowledge of acoustic properties of Sprattus sprattus, Scomber colias and Trachurus mediterraneus in the Adriatic Sea. A novel study using tethered live fish but not involving hooks and anesthetic was tested on T. mediterraneus and S. colias through several ex situ experiments using a split-beam scientific echosounder operating at 38, 120, and 200 kHz. The mean TS was estimated for 29 live specimens, resulting in a conversion factor b20 value of -71.4 dB re 1 m2 and -71.6 dB re 1 m2 respectively which is ~3 dB lower than the current one in use in the Mediterranean Sea. Successively, two monospecific trawl hauls were analyzed through the application of in situ approach for the computation of TS values of S. sprattus which led to six b20 values for sprat (range, -68.8 dB re 1 m2 to -65.6 dB re 1 m2), all higher than the current known value of -71.7 dB re 1 m2. The high difference up to 4.2 dB compared to the current value translates in a significant decrease of absolute sprat biomass along the time series un to 20%. Finally, 149 specimens of the three species were collected for backscattering model application(i.e. Kirchhoff-ray mode model (KRM) and Finite Element Method (FEM)) from digital images of the fish body and swimbladder obtained from Computer Tomography (CT) and X-Ray scans. The values resulting from the application of KRM and FEM are in agreement with empirical results. In general terms the present work proposes the acoustic backscatter characterization of S. colias, S. sprattus and T. mediterraneus in the Mediterranean Sea.
Resumo:
In recent years, we have witnessed the growth of the Internet of Things paradigm, with its increased pervasiveness in our everyday lives. The possible applications are diverse: from a smartwatch able to measure heartbeat and communicate it to the cloud, to the device that triggers an event when we approach an exhibit in a museum. Present in many of these applications is the Proximity Detection task: for instance the heartbeat could be measured only when the wearer is near to a well defined location for medical purposes or the touristic attraction must be triggered only if someone is very close to it. Indeed, the ability of an IoT device to sense the presence of other devices nearby and calculate the distance to them can be considered the cornerstone of various applications, motivating research on this fundamental topic. The energy constraints of the IoT devices are often in contrast with the needs of continuous operations to sense the environment and to achieve high accurate distance measurements from the neighbors, thus making the design of Proximity Detection protocols a challenging task.
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.