14 resultados para Underwater Acoustic Channel
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In biological world, life of cells is guaranteed by their ability to sense and to respond to a large variety of internal and external stimuli. In particular, excitable cells, like muscle or nerve cells, produce quick depolarizations in response to electrical, mechanical or chemical stimuli: this means that they can change their internal potential through a quick exchange of ions between cytoplasm and the external environment. This can be done thanks to the presence of ion channels, proteins that span the lipid bilayer and act like switches, allowing ionic current to flow opening and shutting in a stochastic way. For a particular class of ion channels, ligand-gated ion channels, the gating processes is strongly influenced by binding between receptive sites located on the channel surface and specific target molecules. These channels, inserted in biomimetic membranes and in presence of a proper electronic system for acquiring and elaborating the electrical signal, could give us the possibility of detecting and quantifying concentrations of specific molecules in complex mixtures from ionic currents across the membrane; in this thesis work, this possibility is investigated. In particular, it reports a description of experiments focused on the creation and the characterization of artificial lipid membranes, the reconstitution of ion channels and the analysis of their electrical and statistical properties. Moreover, after a chapter about the basis of the modelling of the kinetic behaviour of ligand gated ion channels, a possible approach for the estimation of the target molecule concentration, based on a statistical analysis of the ion channel open probability, is proposed. The fifth chapter contains a description of the kinetic characterisation of a ligand gated ion channel: the homomeric α2 isoform of the glycine receptor. It involved both experimental acquisitions and signal analysis. The last chapter represents the conclusions of this thesis, with some remark on the effective performance that may be achieved using ligand gated ion channels as sensing elements.
Resumo:
This research has been triggered by an emergent trend in customer behavior: customers have rapidly expanded their channel experiences and preferences beyond traditional channels (such as stores) and they expect the company with which they do business to have a presence on all these channels. This evidence has produced an increasing interest in multichannel customer behavior and it has motivated several researchers to study the customers’ channel choices dynamics in multichannel environment. We study how the consumer decision process for channel choice and response to marketing communications evolves for a cohort of new customers. We assume a newly acquired customer’s decisions are described by a “trial” model, but the customer’s choice process evolves to a “post-trial” model as the customer learns his or her preferences and becomes familiar with the firm’s marketing efforts. The trial and post-trial decision processes are each described by different multinomial logit choice models, and the evolution from the trial to post-trial model is determined by a customer-level geometric distribution that captures the time it takes for the customer to make the transition. We utilize data for a major retailer who sells in three channels – retail store, the Internet, and via catalog. The model is estimated using Bayesian methods that allow for cross-customer heterogeneity. This allows us to have distinct parameters estimates for a trial and an after trial stages and to estimate the quickness of this transit at the individual level. The results show for example that the customer decision process indeed does evolve over time. Customers differ in the duration of the trial period and marketing has a different impact on channel choice in the trial and post-trial stages. Furthermore, we show that some people switch channel decision processes while others don’t and we found that several factors have an impact on the probability to switch decision process. Insights from this study can help managers tailor their marketing communication strategy as customers gain channel choice experience. Managers may also have insights on the timing of the direct marketing communications. They can predict the duration of the trial phase at individual level detecting the customers with a quick, long or even absent trial phase. They can even predict if the customer will change or not his decision process over time, and they can influence the switching process using specific marketing tools
Resumo:
Many potential diltiazem related L-VDCC blockers were developed using a multidisciplinary approach. This current study was to investigate and compare diltiazem with to the newly developed compounds by mouse Langendorff-perfused heart, Ca2+-transient and on recombinant L-VDCC. Twenty particular compounds were selected by the ligand-based virtual screening procedure (LBVS). From these compounds, five of them (5b, M2, M7, M8 and P1) showed a potent and selective inotropic activity on guinea-pig left atria driven 1 Hz. Further assays displayed an interesting negative inotropic effect of M2, M8, P1 and M7 on guinea pig isolated left papillary muscle driven at 1 Hz, a relevant vasorelaxant activity of 5b, M2, M7, M8 and P1 on K+-depolarized guinea-pig ileum longitudinal smooth muscle and a significant inhibition of contraction of 5b, M2, M8 and P1 on carbachol stimulated ileum longitudinal smooth muscle. Wild-type human heart and rabbit lung α1 subunits were expressed (combined with the regulatory α2δ and β3 subunits) in Xenopus Leavis oocytes using a two-electrode voltage clamp technique. Diltiazem is a benzothiazepine Ca2+ channel blocker used clinically for its antihypertensive and antiarrhythmic effects. Previous radioligand binding assays revealed a complex interaction with the benzothiazepine binding site for M2, M7 and M8. (Carosati E. et al. J. Med Chem. 2006, 49; 5206). In agreement with this findings, the relative order of increased rates of contraction and relaxation at lower concentrations s(≤10-6M) in unpaced hearts was M7>M2>M8>P1. Similar increases in Ca2+ transient were observed in cardiomyocytes. Diltiazem showed negative inotropic effects whereas 5b had no significant effect. Diltiazem blocks Ca2+current in a use-dependent manner and facilitates the channel by accelerating the inactivation and decelerating the recovery from inactivation. In contrast to diltiazem, the new analogs had no pronounced use-dependence. Application of 100 μM M8, M2 showed ~ 10% tonic block; in addition, M8, M2 and P1 shifted the steady state inactivation in hyperpolarized direction and the current inactivation time was significantly decreased compared with control (219.6 ± 11.5 ms, 226 ± 14.5 vs. 269 ± 12.9 vs. 199.28 ± 8.19 ms). Contrary to diltiazem, the recovery from the block by M8 and M2 was comparable to control. Only P1 showed a significantly decrease of the time for the recovery from inactivation. All of the compounds displayed the same sensitivity on the Ca2+ channel rabbit lung α1 except P1. Taken together, these findings suggest that M8, M2 and P1 might directly decrease the binding affinity or allow rapid dissociation from the benzothiazepine binding site.
Resumo:
Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.
Resumo:
This thesis is about three major aspects of the identification of top quarks. First comes the understanding of their production mechanism, their decay channels and how to translate theoretical formulae into programs that can simulate such physical processes using Monte Carlo techniques. In particular, the author has been involved in the introduction of the POWHEG generator in the framework of the ATLAS experiment. POWHEG is now fully used as the benchmark program for the simulation of ttbar pairs production and decay, along with MC@NLO and AcerMC: this will be shown in chapter one. The second chapter illustrates the ATLAS detectors and its sub-units, such as calorimeters and muon chambers. It is very important to evaluate their efficiency in order to fully understand what happens during the passage of radiation through the detector and to use this knowledge in the calculation of final quantities such as the ttbar production cross section. The last part of this thesis concerns the evaluation of this quantity deploying the so-called "golden channel" of ttbar decays, yielding one energetic charged lepton, four particle jets and a relevant quantity of missing transverse energy due to the neutrino. The most important systematic errors arising from the various part of the calculation are studied in detail. Jet energy scale, trigger efficiency, Monte Carlo models, reconstruction algorithms and luminosity measurement are examples of what can contribute to the uncertainty about the cross-section.
Resumo:
This work has been realized by the author in his PhD course in Electrical, Computer Science and Telecommunication at the University of Bologna, Faculty of Engineering, Italy. All the documentation here reported is a summary of years of work, under the supervision of Prof. Oreste Andrisano, coordinator of Wireless Communication Laboratory - WiLab, in Bologna. The subject of this thesis is the transmission of video in a context of heterogeneous network, and in particular, using a wireless channel. All the instrumentation that has been used for the characterization of the telecommunication systems belongs to CNR (National Research Council), CNIT (Italian Inter- University Center), and DEIS (Dept. of Electrical, Computer Science, and Systems). From November 2009 to July 2010, the author spent his time abroad, working in collaboration with DLR - German Aerospace Center in Munich, Germany, on channel coding area, developing a general purpose decoder machine to decode a huge family of iterative codes. A patent concerning Doubly Generalized-Low Density Parity Check codes has been produced by the author as well as some important scientic papers, published on IEEE journals and conferences.
Resumo:
Graphene excellent properties make it a promising candidate for building future nanoelectronic devices. Nevertheless, the absence of an energy gap is an open problem for the transistor application. In this thesis, graphene nanoribbons and pattern-hydrogenated graphene, two alternatives for inducing an energy gap in graphene, are investigated by means of numerical simulations. A tight-binding NEGF code is developed for the simulation of GNR-FETs. To speed up the simulations, the non-parabolic effective mass model and the mode-space tight-binding method are developed. The code is used for simulation studies of both conventional and tunneling FETs. The simulations show the great potential of conventional narrow GNR-FETs, but highlight at the same time the leakage problems in the off-state due to various tunneling mechanisms. The leakage problems become more severe as the width of the devices is made larger, and thus the band gap smaller, resulting in a poor on/off current ratio. The tunneling FET architecture can partially solve these problems thanks to the improved subthreshold slope; however, it is also shown that edge roughness, unless well controlled, can have a detrimental effect in the off-state performance. In the second part of this thesis, pattern-hydrogenated graphene is simulated by means of a tight-binding model. A realistic model for patterned hydrogenation, including disorder, is developed. The model is validated by direct comparison of the momentum-energy resolved density of states with the experimental angle-resolved photoemission spectroscopy. The scaling of the energy gap and the localization length on the parameters defining the pattern geometry is also presented. The results suggest that a substantial transport gap can be attainable with experimentally achievable hydrogen concentration.
Resumo:
Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.