14 resultados para Time-resolved spectroscopy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics and geometry of the material inflowing and outflowing close to the supermassive black hole in active galactic nuclei are still uncertain. X-rays are the most suitable way to study the AGN innermost regions because of the Fe Kα emission line, a proxy of accretion, and Fe absorption lines produced by outflows. Winds are typically classified as Warm Absorbers (slow and mildly ionized) and Ultra Fast Outflows (fast and highly ionized). Transient Obscurers -optically thick winds that produce strong spectral hardening in X-rays, lasting from days to months- have been observed recently. Emission and absorption features vary on time-scales from hours to years, probing phenomena at different distances from the SMBH. In this work, we use time-resolved spectral analysis to investigate the accretion and ejection flows, to characterize them individually and search for correlations. We analyzed XMM-Newtomn data of a set of the brightest Seyfert 1 galaxies that went through an obscuration event: NGC 3783, NGC 3227, NGC 5548, and NGC 985. Our aim is to search for emission/absorption lines in short-duration spectra (∼ 10ks), to explore regions as close as the SMBH as the statistics allows for, and possibly catch transient phenomena. First we run a blind search to detect emission/absorption features, then we analyze their evolution with Residual Maps: we visualize simultaneously positive and negative residuals from the continuum in the time-energy plane, looking for patterns and relative time-scales. In NGC 3783 we were able to ascribe variations of the Fe Kα emission line to absorptions at the same energy due to clumps in the obscurer, whose presence is detected at >3σ, and to determine the size of the clumps. In NGC 3227 we detected a wind at ∼ 0.2c at ∼ 2σ, briefly appearing during an obscuration event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the metal sites of different proteins through X-ray Absorption Fine Structure (XAFS) spectroscopy. First of all, the capabilities of XAFS analysis have been improved by ab initio simulation of the near-edge region of the spectra, and an original analysis method has been proposed. The method subsequently served ad a tool to treat diverse biophysical problems, like the inhibition of proton-translocating proteins by metal ions and the matrix effect exerted on photosynthetic proteins (the bacterial Reaction Center, RC) by strongly dehydrate sugar matrices. A time-resolved study of Fe site of RC with μs resolution has been as well attempted. Finally, a further step aimed to improve the reliability of XAFS analysis has been performed by calculating the dynamical parameters of the metal binding cluster by means of DFT methods, and the theoretical result obtained for MbCO has been successfully compared with experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis aims to investigate the fundamental processes governing the performance of different types of photoelectrodes used in photoelectrochemical (PEC) applications, such as unbiased water splitting for hydrogen production. Unraveling the transport and recombination phenomena in nanostructured and surface-modified heterojunctions at a semiconductor/electrolyte interface is not trivial. To approach this task, the work presented here first focus on a hydrogen-terminated p-silicon photocathode in acetonitrile, considered as a standard reference for PEC studies. Steady-state and time-resolved excitation at long wavelength provided clear evidence of the formation of an inversion layer and revealed that the most optimal photovoltage and the longest electron-hole pair lifetime occurs when the reduction potential for the species in solution lies within the unfilled conduction band states. Understanding more complex systems is not as straight-forward and a complete characterization that combine time- and frequency-resolved techniques is needed. Intensity modulated photocurrent spectroscopy and transient absorption spectroscopy are used here on WO3/BiVO4 heterojunctions. By selectively probing the two layers of the heterojunction, the occurrence of interfacial recombination was identified. Then, the addition of Co-Fe based overlayers resulted in passivation of surface states and charge storage at the overlayer active sites, providing higher charge separation efficiency and suppression of recombination in time scales that go from picoseconds to seconds. Finally, the charge carrier kinetics of several different Cu(In,Ga)Se2 (CIGS)-based architectures used for water reduction was investigated. The efficiency of a CIGS photocathode is severely limited by charge transfer at the electrode/electrolyte interface compared to the same absorber layer used as a photovoltaic cell. A NiMo binary alloy deposited on the photocathode surface showed a remarkable enhancement in the transfer rate of electrons in solution. An external CIGS photovoltaic module assisting a NiMo dark cathode displayed optimal absorption and charge separation properties and a highly performing interface with the solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air quality represents a key issue in the so-called pollution “hot spots”: environments in which anthropogenic sources are concentrated and dispersion of pollutants is limited. One of these environments, the Po Valley, normally experiences exceedances of PM10 and PM2.5 concentration limits, especially in winter when the ventilation of the lower layers of the atmosphere is reduced. This thesis provides a highlight of the chemical properties of particulate matter and fog droplets in the Po Valley during the cold season, when fog occurrence is very frequent. Fog-particles interactions were investigated with the aim to determine their impact on the regional air quality. Size-segregated aerosol samples were collected in Bologna, urban site, and San Pietro Capofiume (SPC), rural site, during two campaigns (November 2011; February 2013) in the frame of Supersito project. The comparison between particles size-distribution and chemical composition in both sites showed the relevant contribution of the regional background and secondary processes in determining the Po Valley aerosol concentration. Occurrence of fog in November 2011 campaign in SPC allowed to investigate the role of fog formation and fog chemistry in the formation, processing and deposition of PM10. Nucleation scavenging was investigated with relation to the size and the chemical composition of particles. We found that PM1 concentration is reduced up to 60% because of fog scavenging. Furthermore, aqueous-phase secondary aerosol formation mechanisms were investigated through time-resolved measurements. In SPC fog samples have been systematically collected and analysed since the nineties; a 20 years long database has been assembled. This thesis reports for the first time the results of this long time series of measurements, showing a decrease of sulphate and nitrate concentration and an increase of pH that reached values close to neutrality. A detailed discussion about the occurred changes in fog water composition over two decades is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface properties of minerals have important implications in geology, environment, industry and biotechnology and for certain aspects in the research on the origin of life. This research project aims to widen the knowledge on the nanoscale surface properties of chlorite and phlogopite by means of advanced methodologies, and also to investigate the interaction of fundamental biomolecules, such as nucleotides, RNA, DNA and amino acid glycine with the surface of the selected phyllosilicates. Multiple advanced and complex experimental approaches based on scanning probe microscopy and spatially resolved spectroscopy were used and in some cases specifically developed. The results demonstrate that chlorite exposes at the surface atomically flat terraces with 0.5 nm steps typically generated by the fragmentation of the octahedral sheet of the interlayer (brucitic-type). This fragmentation at the nanoscale generates a high anisotropy and inhomogeneity with surface type and isomorphous cationic substitutions determining variations of the effective surface potential difference, ranging between 50-100 mV and 400-500 mV, when measured in air, between the TOT surface and the interlayer brucitic sheet. The surface potential was ascribed to be the driving force of the observed high affinity of the surface with the fundamental biomolecules, like single molecules of nucleotides, DNA, RNA and amino acids. Phlogopite was also observed to present an extended atomically flat surface, featuring negative surface potential values of some hundreds of millivolts and no significant local variations. Phlogopite surface was sometimes observed to present curvature features that may be ascribed to local substitutions of the interlayer cations or the presence of a crystal lattice mismatch or structural defects, such as stacking faults or dislocation loops. Surface chemistry was found similar to the bulk. The study of the interaction with nucleotides and glycine revealed a lower affinity with respect to the brucite-like surface of chlorite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Social interactions have been the focus of social science research for a century, but their study has recently been revolutionized by novel data sources and by methods from computer science, network science, and complex systems science. The study of social interactions is crucial for understanding complex societal behaviours. Social interactions are naturally represented as networks, which have emerged as a unifying mathematical language to understand structural and dynamical aspects of socio-technical systems. Networks are, however, highly dimensional objects, especially when considering the scales of real-world systems and the need to model the temporal dimension. Hence the study of empirical data from social systems is challenging both from a conceptual and a computational standpoint. A possible approach to tackling such a challenge is to use dimensionality reduction techniques that represent network entities in a low-dimensional feature space, preserving some desired properties of the original data. Low-dimensional vector space representations, also known as network embeddings, have been extensively studied, also as a way to feed network data to machine learning algorithms. Network embeddings were initially developed for static networks and then extended to incorporate temporal network data. We focus on dimensionality reduction techniques for time-resolved social interaction data modelled as temporal networks. We introduce a novel embedding technique that models the temporal and structural similarities of events rather than nodes. Using empirical data on social interactions, we show that this representation captures information relevant for the study of dynamical processes unfolding over the network, such as epidemic spreading. We then turn to another large-scale dataset on social interactions: a popular Web-based crowdfunding platform. We show that tensor-based representations of the data and dimensionality reduction techniques such as tensor factorization allow us to uncover the structural and temporal aspects of the system and to relate them to geographic and temporal activity patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi mira a presentare una panoramica, anche sperimentale con dati editi ed inediti, della ricostruzione delle life histories umane mediante metodi istologici e biogeochimici applicati allo smalto dentale delle dentizioni decidue. La tesi si concentra sulle metodologie biogeochimiche ad alta risoluzione spaziale che consentono di ottenere livelli temporali di dettaglio senza precedenti (da stagionali fino a sub-settimanali), quando combinate con l'analisi istomorfometrica dei tessuti dentali mineralizzati. La presente ricerca si concentra sulla creazione di modelli consistenti di variazione delle concentrazioni di elementi in traccia (con particolare riferimento a stronzio e bario) lungo la giunzione smalto dentinale, ottenuti tramite LA-ICPMS (Laser Ablation Inductively Coupled Mass Spectrometry), in funzione dei cambiamenti nella dieta (allattamento, svezzamento) nel primo anno di età di individui a storia nutrizionale nota (utilizzando denti decidui naturalmente esfoliati). In una prospettiva bioarcheologica, i risultati delle indagini sulla dieta altamente risolte nel tempo e interpretate con modelli come quelli proposti si correlano direttamente alle life histories individuali e consentono una analisi più sfumata e completa del comportamento umano nel passato, fornendo informazioni essenziali per la comprensione degli adattamenti bioculturali e aprendo finestre conoscitive su aspetti quali il rapporto madre-progenie, la gravidanza, l’allattamento, lo stress infantile, la dieta sia della progenie che della madre, la mobilità ad alta risoluzione e molti altri aspetti della vita delle popolazioni del passato che lo studio del DNA antico e della morfologia scheletrica non possono fornire. Dove il DNA antico tace, lo studio avanzato delle life histories parla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that massive black holes have a profound effect on the evolution of galaxies, and possibly on their formation by regulating the amount of gas available for the star formation. However, how black hole and galaxies communicate is still an open problem, depending on how much of the energy released interacts with the circumnuclear matter. In the last years, most studies of feedback have primarily focused on AGN jet/cavity systems in the most massive galaxy clusters. This thesis intends to investigate the feedback phenomena in radio--loud AGNs from a different perspective studying isolated radio galaxies, through high-resolution spectroscopy. In particular one NLRG and three BLRG are studied, searching for warm gas, both in emission and absorption, in the soft X-ray band. I show that the soft spectrum of 3C33 originates from gas photoionized by the central engine. I found for the first time WA in 3C382 and 3C390.3. I show that the observed warm emitter/absorbers is not uniform and probably located in the NLR. The detected WA is slow implying a mass outflow rate and kinetic luminosity always well below 1% the L(acc) as well as the P(jet). Finally the radio--loud properties are compared with those of type 1 RQ AGNs. A positive correlation is found between the mass outflow rate/kinetic luminosity, and the radio loudness. This seems to suggest that the presence of a radio source (the jet?) affects the distribution of the absorbing gas. Alternatively, if the gas distribution is similar in Seyferts and radio galaxies, the M(out) vs rl relation could simply indicate a major ejection of matter in the form of wind in powerful radio AGNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene excellent properties make it a promising candidate for building future nanoelectronic devices. Nevertheless, the absence of an energy gap is an open problem for the transistor application. In this thesis, graphene nanoribbons and pattern-hydrogenated graphene, two alternatives for inducing an energy gap in graphene, are investigated by means of numerical simulations. A tight-binding NEGF code is developed for the simulation of GNR-FETs. To speed up the simulations, the non-parabolic effective mass model and the mode-space tight-binding method are developed. The code is used for simulation studies of both conventional and tunneling FETs. The simulations show the great potential of conventional narrow GNR-FETs, but highlight at the same time the leakage problems in the off-state due to various tunneling mechanisms. The leakage problems become more severe as the width of the devices is made larger, and thus the band gap smaller, resulting in a poor on/off current ratio. The tunneling FET architecture can partially solve these problems thanks to the improved subthreshold slope; however, it is also shown that edge roughness, unless well controlled, can have a detrimental effect in the off-state performance. In the second part of this thesis, pattern-hydrogenated graphene is simulated by means of a tight-binding model. A realistic model for patterned hydrogenation, including disorder, is developed. The model is validated by direct comparison of the momentum-energy resolved density of states with the experimental angle-resolved photoemission spectroscopy. The scaling of the energy gap and the localization length on the parameters defining the pattern geometry is also presented. The results suggest that a substantial transport gap can be attainable with experimentally achievable hydrogen concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectroscopic investigation of the gas-phase molecules relevant for the chemistry of the atmosphere and of the interstellar medium has been performed. Two types of molecules have been studied, linear and symmetric top. Several experimental high-resolution techniques have been adopted, exploiting the spectrometers available in Bologna, Venezia, Brussels and Wuppertal: Fourier-Transform-Infrared Spectroscopy, Cavity-Ring-Down Spectroscopy, Cavity-Enhanced-Absorption Spectroscopy, Tunable-Diode-Laser Spectroscopy. Concerning linear molecules, the spectra of a number of isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm-1. This interval covers bending, stretching, overtone and combination bands, the focus on specific ranges depending on the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 (450-2200 cm-1), 13C12CD2 (450-1700 cm-1), DCCF (320-850cm-1) and DC4H (450-1100 cm-1), of the stretching-bending system for 12C2D2 (450-5500 cm-1) and of the 2nu1 and combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 (6130-6800 cm-1). In case of symmetric top molecules, CH3CCH has been investigated in the 2nu1 region (6200-6700 cm-1), which is particularly congested due to the huge network of states affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 (450-2700 cm-1) have been studied for the first time, characterizing completely the bending states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the presence of several perturbations, has been started. Finally, the fundamental band nu4 of CF3Br in the 1190-1220 cm-1 region has been investigated. Transitions belonging to the CF379Br and CF381Br molecules have been identified since the spectra were recorded using a sample containing the two isotopologues in natural abundance. This allowed the characterization of the v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.