4 resultados para Teaching of second degree
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
BACKGROUND Neuroendocrine neoplasia (NEN) are divided in well differentiated G1,G2 and G3 neuroendocrine tumors (NETs) and G3 neuroendocrine carcinomas (NECs). For the latter no standard therapy in second-line is available and prognosis is poor. METHODS Primary aim was to evaluate new prognostic and predictive biomarkers (WP1-3). In WP4 we explored the activity of FOLFIRI and CAPTEM as second-line in NEC patients in a multicenter non-comparative phase II trial RESULTS In WP1-2 we found that 4 of 6 GEP-NEC patients with a negative 68Ga-PET/CT had a loss of expression of RB1. In WP3 on 47 GEP-NENs patients the presence of DLL3 in 76.9% of G3 NEC correlate with RB1-loss (p<0.001), negative 68Ga-PET/CT(p=0.001) and a poor prognosis. In the WP4 we conducted a multicenter non-comparative phase II trial to explore the activity of FOLFIRI or CAPTEM in terms of DCR, PFS and OS given as second-line in NEC patients. From 06/03/2017 to 18/01/2021 53 out of 112 patients were enrolled in 17 of 23 participating centers. Median follow-up was 10.8 (range 1.4 – 38.6) months. The 3-month DCR was 39.3% in the FOLFIRI and 32.0 % in the CAPTEM arm. The 6-months PFS rate was 34.6% ( 95%CI 17.5-52.5) in FOLFIRI and 9.6% (95%CI 1.8-25.7) in CAPTEM group. In the FOLFIRI subgroup the 6-months and 12-months OS rate were 55.4% (95%CI 32.6-73.3) and 30.3% (CI 11.1-52.2) respectively. In CAPTEM arm the 6-months and 12-months OS rate were 57.2% (95%34.9-74.3) and 29.0% (95%10.0-43.3). The miRNA analysis of 20 patients compared with 20 healthy subjects shows an overexpression of miRNAs involved in staminality , neo-angiogenesis and mitochontrial anaerobic glycolysis activation. CONCLUSION WP1-3 support the hypothesis that G3NECs carrying RB1 loss is associated with a DLL3 expression highlighting a potential therapeutic opportunity. Our study unfortunately didn’t met the primary end–point but the results are promising
Resumo:
Objective To find a correlation between cerebral symptoms at birth and abnormalities found at anomaly scan, through the analysis of sensitivity of the anomaly scan in the prediction of severe CMV neonatal disease. Methods - Design, Setting, Population This was a retrospective collection of all cases of primary congenital CMV infection reported in our unit (Obstetrics and Perinatal Medicine, Policlinico di S Orsola, IRCSS, Bologna) over a period of 9 years (2013–2022). Only cases of fetal infection following confirmed maternal primary infection in the first trimester (MPI) and newborns with confirmed CMV infection on blood/saliva or urine were included. Results Between 2014 and 2022, 69 fetuses had an antenatal diagnosis of primary CMV infection. The infection occurred after MPI in the first, second, and third trimester in 63.7% (43/69), 27.5% (19/69), and 10% (7/69) of cases, respectively. Second-trimester assessment by anomaly scan was abnormal in 10/69 (15%) fetuses: 5/69 (7%) had an extracerebral STA and 5/69 (7%) had a cerebral STA. Normal anomaly scan was found in 59/69 (86%) fetuses. When looking at all fetuses infected in the first trimester, 12.5% (5/40) underwent TOP and 45% (18/40) had symptoms at birth. A mean follow-up of 22.4 months (range 12–48 months) was available for 68/69 (99%) live born neonates. Conclusion Anomaly scan results to have a predictive positive value of 67% fetuses infected in the first trimester. Serial assessment by ultrasound is necessary to predict the risk of sequelae occurring in 35% following fetal infection in the first trimester of pregnancy. This combined evaluation by US and trimester of infection should be useful when counselling on the prognosis of cCMV infection.
Resumo:
The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copula functions with particular emphasis on microarray data. Copula functions are a popular multivariate modeling tool in each field where the multivariate dependence is of great interest and their use in clustering has not been still investigated. The first part of this work contains the review of the literature of clustering methods, copula functions and microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007) clustering techniques because their performance is compared. Then, the probabilistic interpretation of the Sklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe and Xu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications of clustering methods and copulas to the genetic and microarray experiments are highlighted. The second part contains the original contribution proposed. A simulation study is performed in order to evaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifying clusters according to the dependence structure of the data generating process. Different simulations are performed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) and the value of the dependence parameter ) and the results are evaluated by means of different measures of performance. In light of the simulation results and of the limits of the two investigated clustering methods, a new clustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterative procedure of the CoClust and the description of the written R functions with their output are given. The CoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, the dependence parameter value and the degree of overlap of margins) and is compared with the performance of model–based clustering by using different measures of performance, like the percentage of well–identified number of clusters and the not rejection percentage of H0 on . It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigated clustering techniques and is able to identify clusters according to the dependence structure of the data independently of the degree of overlap of margins and the strength of the dependence. The CoClust uses a criterion based on the maximized log–likelihood function of the copula and can virtually account for any possible dependence relationship between observations. Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require a starting classification. Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both to the gene expressions observed in three different cancer samples and to the columns (tumor samples) of the whole data matrix.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.