4 resultados para Tétrachlorure de carbone
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Questa tesi descrive lo sviluppo di un elettrodo modificato con un polimero isolante per la determinazione indiretta del radicale OH. I polimeri testati sono stati polifenolo, polipirrolo e polipirrolo sovraoossidato ed il primo è risultato quello con le migliori prestazioni. Il film di modificante è stato depositato per elettropolimerizzazione del fenolo in ambiente acido, su un elettrodo di carbone vetroso (GC) ed è risultato isolante e perfettamente adeso al GC, impedendo il trasferimento di carica alle più comuni sonde redox. L’attacco dei radicali OH, generati dalla reazione di Fenton o dalla fotolisi di H2O2, rimuove parzialmente il polimero dal GC, ripristinando parzialmente il comportamento conduttore dell’elettrodo. L’entità della degradazione del film polifenolico è stata valutata sfruttando la corrente relativa alla sonda redox Ru(NH3)63+, che rappresenta il segnale analitico per la determinazione del radicale OH. L’elettrodo è stato impiegato per stimare le prestazioni di foto catalizzatori a base di nanoparticelle di TiO2, ottenendo risultati correlati a quelli ricavati da un metodo HPLC. Inoltre esso è stato usato per sviluppare una nuova procedura per la determinazione della capacità di scavenging verso i radicali OH, che è stata applicata all’analisi di composti puri e campioni reali. I risultati erano confrontabili con quelli determinati con metodiche standardizzate, comunemente impiegate per la determinazione della capacità antiossidante. Inoltre è stato condotto uno studio riguardante la modifica di un elettrodo di platino con un idrossido misto a strati a base di cobalto e alluminio (LDH). In particolare si sono valutati gli effetti di diversi pretrattamenti del Pt sulle caratteristiche e prestazioni elettrocatalitiche del film di LDH nei confronti dell’ossidazione di anilina, fenolo e acido salicilico. Questi composti possono essere impiegati come molecole sonda per la determinazione del radicale OH e rivestono interesse da un punto di vista elettroanalitico perché portano facilmente alla passivazione della superficie di Pt.
Resumo:
Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and according to the WHO it is estimated that 36 millions of people worldwide currently suffer from AD. Genetic and environmental factors interact in a complex interplay that might affect pathogenic mechanisms leading to age-related neurodegeneration. The hypothesis is that the presence of allelic polymorphisms in selected genes affecting individual brain susceptibility to infection by the herpes virus family during aging, may contribute to neuronal loss, inflammation and amyloid deposition. Herpes virus family show features relevant to AD, since they infect a large proportion of human population, develop a latent form persisting for several years, are difficult to eliminate by immune responses especially when latency has been established and are able to infect neurons. The association between AD and herpes viruses infection has been investigated. In particular the investigation focused on CMV, EBV and HHV-6 in DNA samples from peripheral blood of a large cohort of patients with clinical diagnosis of AD and age matched CTR, from a longitudinal population study, and DNA samples from brain tissue of patients with neuropathological diagnosis of definitive AD. An association between the presence of EBV and HHV-6 DNA from PBL positivity with the cognitive deterioration and progression to AD has been focused. Moreover, IgG plasma levels in CTR and AD to these viruses were tested. CMV and EBV IgG plasma levels were higher in elderly subjects that developed clinical AD at the end of the five year follow up. Our findings support the notion that persistent cycles of latency and reactivation of herpes viruses may contribute to impair systemic immune response and induce altered inflammatory process that in turn affect cognitive decline during aging.
Resumo:
Nanotechnology promises huge benefits for society and capital invested in this new technology is steadily increasing, therefore there is a growing number of nanotechnology products on the market and inevitably engineered nanomaterials will be released in the atmosphere with potential risks to humans and environment. This study set out to extend the comprehension of the impact of metal (Ag, Co, Ni) and metal oxide (CeO2, Fe3O4, SnO2, TiO2) nanoparticles (NPs) on one of the most important environmental compartments potentially contaminated by NPs, the soil system, through the use of chemical and biological tools. For this purpose experiments were carried out to simulate realistic environmental conditions of wet and dry deposition of NPs, considering ecologically relevant endpoints. In detail, this thesis involved the study of three model systems and the evaluation of related issues: (i) NPs and bare soil, to assess the influence of NPs on the functions of soil microbial communities; (ii) NPs and plants, to evaluate the chronic toxicity and accumulation of NPs in edible tissues; (iii) NPs and invertebrates, to verify the effects of NPs on earthworms and the damaging of their functionality. The study highlighted that NP toxicity is generally influenced by NP core elements and the impact of NPs on organisms is specie-specific; moreover experiments conducted in media closer to real conditions showed a decrease in toxicity with respect to in vitro test or hydroponic tests. However, only a multidisciplinary approach, involving physical, chemical and biological skills, together with the use of advanced techniques, such as X-ray absorption fine structure spectroscopy, could pave the way to draw the right conclusions and accomplish a deeper comprehension of the effects of NPs on soil and soil inhabitants.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.