8 resultados para Subgingival microbiota

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La ricerca si è focalizzata su due degli aspetti di interesse odontoiatrico più diffusi: la carie dentaria e la parodontite cronica. Il problema della carie dentaria è stato studiato in una popolazione di 39 soggetti affetti da cardiopatia congenita in cui la scarsa igiene orale è fattore di rischio per problematiche di salute generale e soprattutto per lo sviluppo di endocardite infettiva. I dati osservati e confrontati con quelli di un omogeneo gruppo di controllo dimostrano che nella dentatura decidua questi bambini hanno più denti cariati, come dimostrato dalla significativa differenza dell'indice dmft. Nella dentatura permanente non si osservano differenze tra i due gruppi. La carica microbica totale rilevata nella saliva e la presenza di Streptococcus mutans non mostrano differenze tra i due gruppi. I problemi di parodontite cronica sono stati studiati in un gruppo di 352 soggetti italiani adulti in cui si è definita la prevalenza dei 6 più importanti patogeni parodontali e la possibile correlazione con parametri clinici (pus, sanguinamento al sondaggio - BOP, profondità di sondaggio della tasca parodontale – PPD). Tra le 6 specie batteriche ricercate, quello di più frequente riscontro è stato Fusobacterium nucleatum (95%), mentre quello con carica batterica più alta è stato Tannerella forsythia. La carica batterica di Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia e Fusobacterium nucleatum ha mostrato una correlazione diretta con il BOP e la presenza di pus. Inoltre, si è riscontrato che la carica batterica di tutte le specie (tranne Aggregatibacterium actinomycetemcomitans) aumenta all'aumentare del PPD. Tra le variabili studiate, PPD rappresenta il più importante fattore di rischio per la presenza di parodontopatogeni, mentre BOP è un indicatore di rischio per la ricerca del complesso rosso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota. The study presented here is focused on the application and comparison of two different microarray approaches for the characterization of the human gut microbiota, the HITChip and the HTF-Microb.Array, with particular attention to the effects of the aging process on the composition of this ecosystem. By using the Human Intestinal Tract Chip (HITChip), recently developed at the Wageningen University, The Netherland, we explored the age-related changes of gut microbiota during the whole adult lifespan, from young adults, through elderly to centenarians. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment of facultative anaerobes. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammation status, also known as inflamm-aging, as determined by a range of peripheral blood inflammatory markers. In parallel, we overtook the development of our own phylogenetic microarray with a lower number of targets, aiming the description of the human gut microbiota structure at high taxonomic level. The resulting chip was called High Taxonomic level Fingerprinting Microbiota Array (HTF-Microb.Array), and was based on the Ligase Detection Reaction (LDR) technology, which allowed us to develop a fast and sensitive tool for the fingerprint of the human gut microbiota in terms of presence/absence of the principal groups. The validation on artificial DNA mixes, as well as the pilot study involving eight healthy young adults, demonstrated that the HTF-Microb.Array can be used to successfully characterize the human gut microbiota, allowing us to obtain results which are in approximate accordance with the most recent characterizations. Conversely, the evaluation of the relative abundance of the target groups on the bases of the relative fluorescence intensity probes response still has some hindrances, as demonstrated by comparing the HTF.Microb.Array and HITChip high taxonomic level fingerprints of the same centenarians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weaning is a crucial period in the management of piglets. In modern piggeries economic interest make weaning age decrease more and more and the detrimental consequences of weaning have as much importance as earlier the weaning occurs. The risk of development of post-weaning diarrhea (PWD) in piglets is high and PWD is the cause of serious economic losses in pig herds. In the past the supplementation of the feed given after weaning with growth promoters antibiotics, in order to keep PWD under control, used to be a common practice, but their usage has been banned in EU since 2006. This measure led to the investigation of alternative suitable feed supplements that would be reasonably efficient in protecting and sustaining animal health and performance. Aim of this thesis was to evaluate the effect of some different alternatives to growth-promoters antibiotics on weaning piglets and to assess if some of them could be considered as valuables options to replace auxinic in animal feeding. The study is composed by four experimental trials. The first one aims to identify mechanisms involved in the auxinic effects of antibiotics in the diets; the following three evaluate the addition butyric acid, tryptophan, and nitrate as alternative to in-feed antimicrobials. Although some results are controversial, it appears from the data presented that the alternatives to in-feed antibiotics considered may exert positive effects on some zootechnical and health parameters on piglet in the post-weaning period. Anyway, the mechanism of action and the interaction with microbiota of such additives should be investigated inside out because many effects remains poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacteria, dominated by the genus Lactobacillus. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal ecosystem. This role is particularly important during pregnancy because vaginal infection is one of the most important mechanisms for preterm birth. The most common vaginal disorder is bacterial vaginosis (BV). BV is a polymicrobial disorder, characterized by a depletion of lactobacilli and an increase in the concentration of other bacteria, including Gardnerella vaginalis, anaerobic Gram-negative rods, anaerobic Gram-positive cocci, Mycoplasma hominis, and Mobiluncus spp. An integrated molecular approach based on real-time PCR and PCR-DGGE was used to investigate the effects of two different therapeutic approaches on the vaginal microbiota composition. (i) The impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbial ecology and immunological profiles of healthy women during late pregnancy was investigated. The intake was associated to a slight modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. (ii) The efficacy of different doses of the antibiotic rifaximin (100 mg/day for 5 days, 25 mg/day for 5 days, 100 mg/day for 2 days) on the vaginal microbiota of patients with BV enrolled in a multicentre, double-blind, randomised, placebo-controlled study was also evaluated. The molecular analyses demonstrated the ability of rifaximin 25 mg/day for 5 days to induce an increase of lactobacilli and a decrease of the BV-associated bacteria after antibiotic treatment, and a reduction of the complexity of the vaginal microbial communities. Thus, confirming clinical results, it represents the most effective treatment to be used in future pivotal studies for the treatment of BV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il microbiota intestinale riveste un ruolo importantissimo nell’influenzare la salute dell’ospite. È stato dimostrato come la composizione della dieta possa condizionare lo stato di benessere dell’animale, inducendo importanti cambiamenti tra le popolazioni batteriche che coabitano l’intestino; l’uso di prebiotici rappresenta una delle strategie maggiormente impiegate per modulare positivamente la composizione ed il metabolismo dell’ecosistema gastroenterico. Il presente progetto di dottorato si è proposto di indagare gli effetti sul microbiota intestinale del cane e del gatto di diete a diverso tenore proteico e contenenti proteine di diversa digeribilità in presenza o meno di sostanze prebiotiche. Inoltre, sono stati valutati gli effetti della presenza di un estratto di Yucca schidigera e di tannini sulla microflora intestinale del gatto. In ultima istanza, sono state valutate le conseguenze di dosi crescenti di lattosio sul benessere intestinale del cane. I risultati del presente studio hanno rilevato come le sostanze prebiotiche influiscono sulla composizione e sul metabolismo della microflora del cane e del gatto, e come l’impiego di diete ricche di proteine possa avere conseguenze negative sull’ambiente intestinale. Tuttavia, la presenza di oligosaccaridi non sembra contrastare gli effetti negativi che diete ad alto tenore proteico potrebbero avere sull’ecosistema intestinale dell’animale. Nella successiva prova è stato evidenziato come l’inclusione nella dieta di estratti di Yucca e tannini possa contribuire a mitigare l’emanazione di sostanze maleodoranti dalle deiezioni degli animali da compagnia. Nel corso dell’ultima prova, nonostante non siano state osservate differenze tra le popolazioni microbiche intestinali, la somministrazione di dosi crescenti di lattosio ha indotto una certa riduzione delle fermentazioni proteolitiche microbiche. Ulteriori studi sono necessari per stabilire in che misura la dieta e gli alimenti “funzionali” possano influire sul microbiota intestinale del cane e del gatto e come queste informazioni possono essere utilizzate per migliorare miratamente l’alimentazione e lo stato di salute degli animali da compagnia.