5 resultados para Stochastic target problem
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
In biological world, life of cells is guaranteed by their ability to sense and to respond to a large variety of internal and external stimuli. In particular, excitable cells, like muscle or nerve cells, produce quick depolarizations in response to electrical, mechanical or chemical stimuli: this means that they can change their internal potential through a quick exchange of ions between cytoplasm and the external environment. This can be done thanks to the presence of ion channels, proteins that span the lipid bilayer and act like switches, allowing ionic current to flow opening and shutting in a stochastic way. For a particular class of ion channels, ligand-gated ion channels, the gating processes is strongly influenced by binding between receptive sites located on the channel surface and specific target molecules. These channels, inserted in biomimetic membranes and in presence of a proper electronic system for acquiring and elaborating the electrical signal, could give us the possibility of detecting and quantifying concentrations of specific molecules in complex mixtures from ionic currents across the membrane; in this thesis work, this possibility is investigated. In particular, it reports a description of experiments focused on the creation and the characterization of artificial lipid membranes, the reconstitution of ion channels and the analysis of their electrical and statistical properties. Moreover, after a chapter about the basis of the modelling of the kinetic behaviour of ligand gated ion channels, a possible approach for the estimation of the target molecule concentration, based on a statistical analysis of the ion channel open probability, is proposed. The fifth chapter contains a description of the kinetic characterisation of a ligand gated ion channel: the homomeric α2 isoform of the glycine receptor. It involved both experimental acquisitions and signal analysis. The last chapter represents the conclusions of this thesis, with some remark on the effective performance that may be achieved using ligand gated ion channels as sensing elements.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
A pursuer UAV tracking and loitering around a target is the problem analyzed in this thesis. The UAV is assumed to be a fixed-wing vehicle and constant airspeed together with bounded lateral accelerations are the main constraints of the problem. Three different guidance laws are designed for ensuring a continuos overfly on the target. Different proofs are presented to demonstrate the stability properties of the laws. All the algorithms are tested on a 6DoF Pioneer software simulator. Classic control design methods have been adopted to develop autopilots for implementig the simulation platform used for testing the guidance laws.
Resumo:
The topic of this work concerns nonparametric permutation-based methods aiming to find a ranking (stochastic ordering) of a given set of groups (populations), gathering together information from multiple variables under more than one experimental designs. The problem of ranking populations arises in several fields of science from the need of comparing G>2 given groups or treatments when the main goal is to find an order while taking into account several aspects. As it can be imagined, this problem is not only of theoretical interest but it also has a recognised relevance in several fields, such as industrial experiments or behavioural sciences, and this is reflected by the vast literature on the topic, although sometimes the problem is associated with different keywords such as: "stochastic ordering", "ranking", "construction of composite indices" etc., or even "ranking probabilities" outside of the strictly-speaking statistical literature. The properties of the proposed method are empirically evaluated by means of an extensive simulation study, where several aspects of interest are let to vary within a reasonable practical range. These aspects comprise: sample size, number of variables, number of groups, and distribution of noise/error. The flexibility of the approach lies mainly in the several available choices for the test-statistic and in the different types of experimental design that can be analysed. This render the method able to be tailored to the specific problem and the to nature of the data at hand. To perform the analyses an R package called SOUP (Stochastic Ordering Using Permutations) has been written and it is available on CRAN.