9 resultados para Sleep disorders
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Introduction: A higher frequency of sleep and breathing disorders in Multiple System Atrophy (MSA) populations is documented in literature. The analysis of disease progression and prognosis in patients with sleep and breathing disorders could shed light on specific neuropathology and pathophysiology of MSA. Objective: To characterize sleep disorders and their longitudinal modifications during disease course in MSA patients, and to determine their prognostic value. Methods: This is a retrospective and prospective cohort study including 182 MSA patients (58.8% males). Type of onset was defined by the first reported motor or autonomic symptom/sign related to MSA. The occurrence of symptoms/signs and milestones of disease progression and their latency were collected. REM sleep behaviour disorder (RBD) and stridor were video-polysomnography (VPSG)-confirmed. VPSG recordings were analysed in a standardized fashion during the disease course. Survival data were based on time to death from the first symptom of disease. Results: Isolated RBD represented the first MSA symptom in 30% of patients, preceding disease onset according to international criteria with a median of 3(1–5) years. Patients developing early stridor or presenting with RBD at disease onset showed a more rapid and severe disease progression. These features had independent negative prognostic value for survival. Sleep architecture was characterized by peculiar features which could represent negative markers in MSA prognosis. Patients with stridor treated with tracheostomy showed a reduced risk of death. Conclusions: This is one of the first studies focusing on longitudinal progression of sleep in MSA. Sleep disorders are key features of disease, playing a role in presentation, prognosis and progression. In our MSA cohort, RBD represented the most frequent mode of disease presentation. Moreover, some specific clinical and instrumental sleep features could represent a hallmark of MSA and could be involved in prognosis and, in particular, in sudden death and death during sleep.
Resumo:
Aim of this study is to describe the possible diagnostic value of sleep disturbances in the differential diagnosis of neurodegenerative diseases characterized by parkinsonism at onset. 42 consecutive patients with parkinsonian features and disease duration up to 3 years were included in the BO-ProPark study. Each patient was evaluated twice, at baseline (T0) and 16 months later (T1). Patients were diagnosed as Parkinson disease (PD, 27 patients), PD plus (PD with cognitive impairment/dementia or dysautonomia, 4 patients) and parkinsonian syndrome (PS, 11 patients). All patients underwent a full night video-polysomnography scored by a neurologist blinded to the clinical diagnosis. Sleep efficiency and total sleep time were reduced in all patients; wake after sleep onset was higher in patients with atypical parkinsonisms than in PD patients. No significant differences between groups of patients were detected in other sleep parameters. The mean percentage of epochs with enhanced tonic muscle EMG activity during REM sleep was higher in PD plus and PS than in PD. No difference in phasic muscle EMG activity during REM sleep was seen between the two groups. REM behaviour disorder was more frequent in PD plus and PS than in PD patients. Our data suggest that REM sleep motor control is more frequently impaired at disease onset in patients with PS and PD plus compared to PD patients. The presence of RBD or an enhanced tonic muscle EMG activity in a patient with recent onset parkinsonian features should suggest a diagnosis of atypical parkinsonism, rather than PD. More data are needed to establish the diagnostic value of these features in the differential diagnosis of parkinsonisms. The evaluation of sleep disorders may be a useful tool in the differential diagnosis of parkinsonism at onset.
Resumo:
Atrial fibrillation (AF) is a widespread arrhythmia, associated with higher risk of stroke, sleep disorders and dementia. In some conditions, electrical cardioversion (ECV) represents the best choice for rhythm control. Nowadays, there is a growing interest in developing new devices for screening and monitoring of AF patients. We aimed to improve acute efficacy of ECV procedure and to explore the feasibility of the use of new wearable devices for monitoring in candidates to AF ECV. We compared antero-apical pads vs antero-posterior patches approach for AF ECV, and we elaborated a decision algorithm to improve acute efficacy. After, we evaluated the feasibility of the use of new wearable devices for monitoring of candidates to AF ECV. In particular, we analysed the effect of AF ECV on heart rate variability and vascular age parameters derived from PPG signals registered with Empatica (CE 1876/MDD 93/42/EEC), and on EEG pattern registered with Neurosteer (Israel). From December 2005 to September 2019, 492 patients were enrolled. We evaluated acute efficacy of the two approaches for AF ECV and we elaborated a decision algorithm based on body surface area, weight, and height. The decision algorithm improved first shock efficacy (93.2% vs. 87.2%, p=0.025). From 1st November 2021 to 1st April 2022, 24 patients were enrolled in PPEEG-AF pilot study. Considering vascular age parameters, a significant reduction in TPR and a wave was observed (p<0.001). Considering sleep patterns, a tendency to higher coherence was observed in registrations acquired during AF, or considering signals registered for each patient independently from AF. The new decision algorithm improved acute efficacy and reduced costs associated with adhesive patches. Significant modifications were observed on vascular age parameters measured before and after ECV, and a possible AF effect on sleep pattern was noticed. More data are necessary to confirm these preliminary results.
Resumo:
Background: It is well known, since the pioneristic observation by Jenkins and Dallenbach (Am J Psychol 1924;35:605-12), that a period of sleep provides a specific advantage for the consolidation of newly acquired informations. Recent research about the possible enhancing effect of sleep on memory consolidation has focused on procedural memory (part of non-declarative memory system, according to Squire’s taxonomy), as it appears the memory sub-system for which the available data are more consistent. The acquisition of a procedural skill follows a typical time course, consisting in a substantial practice-dependent learning followed by a slow, off-line improvement. Sleep seems to play a critical role in promoting the process of slow learning, by consolidating memory traces and making them more stable and resistant to interferences. If sleep is critical for the consolidation of a procedural skill, then an alteration of the organization of sleep should result in a less effective consolidation, and therefore in a reduced memory performance. Such alteration can be experimentally induced, as in a deprivation protocol, or it can be naturally observed in some sleep disorders as, for example, in narcolepsy. In this research, a group of narcoleptic patients, and a group of matched healthy controls, were tested in two different procedural abilities, in order to better define the size and time course of sleep contribution to memory consolidation. Experimental Procedure: A Texture Discrimination Task (Karni & Sagi, Nature 1993;365:250-2) and a Finger Tapping Task (Walker et al., Neuron 2002;35:205-11) were administered to two indipendent samples of drug-naive patients with first-diagnosed narcolepsy with cataplexy (International Classification of Sleep Disorder 2nd ed., 2005), and two samples of matched healthy controls. In the Texture Discrimination task, subjects (n=22) had to learn to recognize a complex visual array on the screen of a personal computer, while in the Finger Tapping task (n=14) they had to press a numeric sequence on a standard keyboard, as quickly and accurately as possible. Three subsequent experimental sessions were scheduled for each partecipant, namely a training session, a first retrieval session the next day, and a second retrieval session one week later. To test for possible circadian effects on learning, half of the subjects performed the training session at 11 a.m. and half at 17 p.m. Performance at training session was taken as a measure of the practice-dependent learning, while performance of subsequent sessions were taken as a measure of the consolidation level achieved respectively after one and seven nights of sleep. Between training and first retrieval session, all participants spent a night in a sleep laboratory and underwent a polygraphic recording. Results and Discussion: In both experimental tasks, while healthy controls improved their performance after one night of undisturbed sleep, narcoleptic patients showed a non statistically significant learning. Despite this, at the second retrieval session either healthy controls and narcoleptics improved their skills. Narcoleptics improved relatively more than controls between first and second retrieval session in the texture discrimination ability, while their performance remained largely lower in the motor (FTT) ability. Sleep parameters showed a grater fragmentation in the sleep of the pathological group, and a different distribution of Stage 1 and 2 NREM sleep in the two groups, being thus consistent with the hypothesis of a lower consolidation power of sleep in narcoleptic patients. Moreover, REM density of the first part of the night of healthy subjects showed a significant correlation with the amount of improvement achieved at the first retrieval session in TDT task, supporting the hypothesis that REM sleep plays an important role in the consolidation of visuo-perceptual skills. Taken together, these results speak in favor of a slower, rather than lower consolidation of procedural skills in narcoleptic patients. Finally, an explanation of the results, based on the possible role of sleep in contrasting the interference provided by task repetition is proposed.
Resumo:
Poiché la diagnosi differenziale degli episodi parossistici notturni è affidata alla VEPSG, tenendo conto dei limiti di tale metodica, il progetto attuale ha lo scopo di definire la resa diagnostica di strumenti alternativi alla VEPSG: anamnesi, home-made video ed EEG intercritico. Sono stati reclutati consecutivamente 13 pazienti, afferiti al nostro Dipartimento per episodi parossistici notturni. Ciascun paziente è stato sottoposto ad un protocollo diagnostico standardizzato. A 5 Medici Esperti in Epilessia e Medicina del Sonno è stato chiesto di formulare un orientamento diagnostico sulla base di anamnesi, EEG intercritico, home-made video e VEPSG. Attraverso l’elaborazione degli orientamenti diagnostici è stata calcolata la resa diagnostica delle procedure esaminate, a confronto con la VEPSG, attraverso il concetto di “accuratezza diagnostica”. Per 6 pazienti è stato possibile porre una diagnosi di Epilessia Frontale Notturna, per 2 di parasonnia, in 5 la diagnosi è rimasta dubbia. L’accuratezza diagnostica di ciascuna procedura è risultata moderata, con lievi differenze tra le diverse procedure (61.5% anamnesi; 66% home-made video; 69,2 % EEG intercritico). E’ essenziale migliorare ulteriormente l’accuratezza diagnostica di anamnesi, EEG intercritico ed home-made video, che possono risultare cruciali nei casi in cui la diagnosi non è certa o quando la VEPSG non è disponibile.
Resumo:
Background: The natural history of Myotonic Dystrophy type 1 is largely unclear, longitudinal studies are lacking. Objectives: to collect clinical and laboratory data, to evaluate sleep disorders, somatic and autonomic skin fibres, neuropsychological and neuroradiological aspects in DM1 patients. Methods: 72 DM1 patients underwent a standardized clinical and neuroradiological evaluation performed by a multidisciplinary team during 3 years of follow-up. Results: longer disease duration was associated with higher incidence of conduction disorders and lower ejection fraction; higher CVF values were predictors for a reduced risk of cardiopathy. Lower functional pulmonary values were associated with class of expansion and were negatively associated with disease duration; arterial blood gas parameters were not associated with expansion size, disease duration nor with respiratory function test. Excessive daytime sleepiness was not associated with class of expansion nor with any of the clinical parameters examined. We detected apnoea in a large percentage of patients, without differences between the 3 genetic classes; higher CVF values were predictors for a reduced risk of apnoea. Skin biopsies demonstrated the presence of a subclinical small fibre neuropathy with involvement of the somatic fibres. The pupillometry study showed lower pupil size at baseline and a lower constriction response to light. The most affected neuropsychological domains were executive functions, visuoconstructional, attention and visuospatial tasks, with a worse performance of E1 patients in the visuoperceptual ability and social cognition tasks. MRI study demonstrated a decrease in the volumes of frontal, parietal, temporal, occipital cortices, accumbens, putamen nuclei and a more severe volume reduction of the isthmus cingulate, transverse temporal, superior parietal and temporal gyri in E2 patients. Discussion: only some clinical parameters could predict the risk of cardiopathy, pulmonary syndrome and sleep disorders, while other clinical aspects proved to be unpredictable, confirming the importance of periodic clinical follow-up of these patients.
Disorders of arousal: a physiopathological window to explore the mechanisms regulating sleep arousal
Resumo:
Disorders of Arousal (DoA) belong to NREM parasomnias and are characterized by motor and emotional episodes arising from incomplete awakenings from NREM sleep. DoA episodes embody at the same time the double nature of the arousal process, that is preserving sleep as well as respond to sleep perturbations, thus being an ideal model to study sleep arousal. In the first part of this work, we performed a spectral whole scalp EEG analysis exploring the neurophysiologic correlates of the pre-motor onset of the episodes in a large sample of patients with DoA, disclosing the co-existence of both slow and fast EEG frequencies over overlapping areas before DoA episodes, suggesting an alteration of local sleep mechanisms. Episodes of different complexity were preceded by a similar EEG activation, implying that they possibly share a similar pathophysiology. In the second part of this work, we performed a spectral whole scalp EEG analysis comparing the pre-motor onset of the episodes and normal arousals from healthy sleepers, disclosing the persistence of slow frequencies as well as sigma band (expression of sleep spindles) in DoA episodes. Overall, these results might subtend a higher tendence to preserve sleep and a more defective mechanism toward developing a complete arousal in patients with DoA. In the last part of our work, we evaluated 15 patients with DoA with 15 controls in a functional MRI study during wakefulness in addition to a proton magnetic resonance spectroscopy (1H-MRS) focused on cingulate cortex. We disclosed subtle alterations on posterior cingulate cortex as well as an increased connectivity in sensory-motor network, possibly representing a trait-functional feature responsible for the dysfunctional arousal process in DoA patients
Resumo:
Study Objectives. The use of mouse models in sleep apnea research is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. With this study we wanted to develop a protocol to look for the presence of OSAs in wild-type mice and, then, to apply it to a mouse model of Down Syndrome (DS), a human pathology characterized by a high incidence of OSAs. Methods. Nine C57Bl/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), diaphragmatic activity (DIA) and then placed in a whole-body-plethysmographic (WBP) chamber for 8h during the resting (light) phase to simultaneously record sleep and breathing activity. The concomitant analysis of WBP and DIA signals allowed the discrimination between CSA and OSA. The same protocol was then applied to 12 Ts65Dn mice (a validated model of DS) and 14 euploid controls. Results. OSAs represented about half of the apneic events recorded during rapid-eye-movement sleep (REMS) in each experimental group while almost only CSAs were found during non-REMS. Ts65Dn mice had similar rate of apneic events than euploid controls but a significantly higher occurrence of OSAs during REMS. Conclusions. We demonstrated for the first time that mice physiologically exhibit both CSAs and OSAs and that the latter are more prevalent in the Ts65Dn mouse model of DS. These findings indicate that mice can be used as a valid tool to accelerate the comprehension of the pathophysiology of all kind of sleep apnea and for the development of new therapeutical approaches to contrast these respiratory disorders.
Resumo:
In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration