4 resultados para Single-walled carbon nanotubes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this PhD thesis is the investigation of the photophysical properties of materials that can be exploited in solar energy conversion. In this context, my research was mainly focused on carbon nanotube-based materials and ruthenium complexes. The first part of the thesis is devoted to carbon nanotubes (CNT), which have unique physical and chemical properties, whose rational control is of substantial interest to widen their application perspectives in many fields. Our goals were (i) to develop novel procedures for supramolecular dispersion, using amphiphilic block copolymers, (ii) to investigate the photophysics of CNT-based multicomponent hybrids and understand the nature of photoinduced interactions between CNT and selected molecular systems such as porphyrins, fullerenes and oligo (p-phynylenevinylenes). We established a new protocol for the dispersion of SWCNTs in aqueous media via non-covalent interactions and demonstrated that some CNT-based hybrids are suitable for testing in PV devices. The second part of the work is focussed on the study of homoleptic and heteroleptic Ru(II) complexes with bipyridine and extended phenanthroline ligands. Our studies demonstrated that these compounds are potentially useful as light harvesting systems for solar energy conversion. Both CNT materials and Ru(II) complexes have turned out to be remarkable examples of photoactive systems. The morphological and photophysical characterization of CNT-based multicomponent systems allowed a satisfactory rationalization of the photoinduced interactions between the individual units, despite several hurdles related to the intrinsic properties of CNTs that prevent, for instance, the utilization of laser spectroscopic techniques. Overall, this work may prompt the design and development of new functional materials for photovoltaic devices.