6 resultados para Simulation flow

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main focus of this work is to define a numerical methodology to simulate an aerospike engine and then to analyse the performance of DemoP1, which is a small aerospike demonstrator built by Pangea Aerospace. The aerospike is a promising solution to build more efficient engine than the actual one. Its main advantage is the expansion adaptation that allows to reach the optimal expansion in a wide range of ambient pressures delivering more thrust than an equivalent bell-shaped nozzle. The main drawbacks are the cooling system design and the spike manufacturing but nowadays, these issues seem to be overcome with the use of the additive manufacturing method. The simulations are performed with dbnsTurbFoam which is a solver of OpenFOAM. It has been designed to simulate a supersonic compressible turbulent flow. This work is divided in four chapters. The first one is a short introduction. The second one shows a brief summary of the theoretical performance of the aerospike. The third one introduces the numerical methodology to simulate a compressible supersonic flow. In the fourth chapter, the solver has been verified with an experiment found in literature. And in the fifth chapter, the simulations on DemoP1 engine are illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T2Well-ECO2M is a coupled wellbore reservoir simulator still under development at Lawrence Berkeley National Laboratory (USA) with the ability to deal with a mixture of H2O-CO2-NaCl and includes the simulation of CO2 phase transition and multiphase flow. The code was originally developed for the simulation of CO2 injection into deep saline aquifers and the modelling of enhanced geothermal systems; however, the focus of this research was to modify and test T2Well-ECO2M to simulate CO2 injection into depleted gas reservoirs. To this end, the original code was properly changed in a few parts and a dedicated injection case was developed to study CO2 phase transition inside of a wellbore and the corresponding thermal effects. In the first scenario, the injection case was run applying the fully numerical approach of wellbore to formation heat exchange calculation. Results were analysed in terms of wellbore pressure and temperature vertical profiles, wellhead and bottomhole conditions, and characteristic reservoir displacement fronts. Special attention was given to the thorough analysis of bottomhole temperature as the critical parameter for hydrate formation. Besides the expected direct effect of wellbore temperature changes on reservoir conditions, the simulation results indicated also the effect of CO2 phase change in the near wellbore zone on BH pressure distribution. To test the implemented software changes, in a second scenario, the same injection case was reproduced using the improved semi-analytical time-convolution approach for wellbore to formation heat exchange calculation. The comparison of the two scenarios showed that the simulation of wellbore and reservoir parameters after one year of continuous CO2 injection are in good agreement with the computation time to solve the time-convolution semi-analytical reduced. The new updated T2Well-ECO2M version has shown to be a robust and performing wellbore-reservoir simulator that can be also used to simulate the CO2 injection into depleted gas reservoirs.