13 resultados para Semantic classes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
The main task of this research is to investigate the situation of drugs in the city of Bologna. A first discussion pertains the method to adopt studying an ethical question as drug actually is. In fact it is widely known that drugs problem involves many political and religious considerations which are misleading in a scientific point of view. After a methodological chapter supposed to show the purpose of this research, it is discussed a logical definition of drugs. There it is examined an aristotelian definition of drugs with semantic instruments from philosophy of the language to fulfil meaning of terms. The following chapter discusses personal stories of different people involved in drug in the city, who actually represent the main characters of drug subculture. Afterwards the official statistics concerning drug enforcement is discussed and compared with a specific police action which allows to criticize that data, and to make some hypothesis about drug quantities circulating in town. Next step is investigating drugs addicted in town, with a validation technique of data base queries. The result is a statistics of users in which there is evidence of main presence of foreigners and not resident Italians who use to practice drugs in this city. Demographic analysis of identified people shows that drug addiction is widely diffused among all range of age and mainly pertains males, with an increasing trend. Then is examined the geographic distribution of users residence and use places, showing that drugs abuse is spread among all classes of population, while drugs squares are located in some points of town which realise a kind of drug area with a concentration of dealers not organised together. With some detailed queries in police reports statistics is studied some specific subject on nowadays drug abuse, the phenomenon of multi-use, the relation between drug and crime, the relation between drug and mental disease, recording some evidence in such topics. Finally a survey on city media along last two years shows the interest about this topic and gives an idea of public opinion’s information about drugs. The study refers to the city of Bologna only, and pertains data recorded along last ten years by the local metropolitan police corp.
Resumo:
Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.
Resumo:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
Resumo:
This work is concerned with the increasing relationships between two distinct multidisciplinary research fields, Semantic Web technologies and scholarly publishing, that in this context converge into one precise research topic: Semantic Publishing. In the spirit of the original aim of Semantic Publishing, i.e. the improvement of scientific communication by means of semantic technologies, this thesis proposes theories, formalisms and applications for opening up semantic publishing to an effective interaction between scholarly documents (e.g., journal articles) and their related semantic and formal descriptions. In fact, the main aim of this work is to increase the users' comprehension of documents and to allow document enrichment, discovery and linkage to document-related resources and contexts, such as other articles and raw scientific data. In order to achieve these goals, this thesis investigates and proposes solutions for three of the main issues that semantic publishing promises to address, namely: the need of tools for linking document text to a formal representation of its meaning, the lack of complete metadata schemas for describing documents according to the publishing vocabulary, and absence of effective user interfaces for easily acting on semantic publishing models and theories.
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
The aim of the thesis is to investigate the topic of semantic under-determinacy, i.e. the failure of the semantic content of certain expressions to determine a truth-evaluable utterance content. In the first part of the thesis, I engage with the problem of setting apart semantic under-determinacy as opposed to other phenomena such as ambiguity, vagueness, indexicality. As I will argue, the feature that distinguishes semantic under-determinacy from these phenomena is its being explainable solely in terms of under-articulation. In the second part of the thesis, I discuss the topic of how communication is possible, despite the semantic under-determinacy of language. I discuss a number of answers that have been offered: (i) the Radical Contextualist explanation which emphasises the role of pragmatic processes in utterance comprehension; (ii) the Indexicalist explanation in terms of hidden syntactic positions; (iii) the Relativist account, which regards sentences as true or false relative to extra coordinates in the circumstances of evaluation (besides possible worlds). In the final chapter, I propose an account of the comprehension of utterances of semantically under-determined sentences in terms of conceptual constraints, i.e. ways of organising information which regulate thought and discourse on certain matters. Conceptual constraints help the hearer to work out the truth-conditions of an utterance of a semantically under-determined sentence. Their role is clearly semantic, in that they contribute to “what is said” (rather than to “what is implied”); however, they do not respond to any syntactic constraint. The view I propose therefore differs, on the one hand, from Radical Contextualism, because it stresses the role of semantic-governed processes as opposed to pragmatics-governed processes; on the other hand, it differs from Indexicalism in its not endorsing any commitment as to hidden syntactic positions; and it differs from Relativism in that it maintains a monadic notion if truth.
Resumo:
The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.
Resumo:
A permutation is said to avoid a pattern if it does not contain any subsequence which is order-isomorphic to it. Donald Knuth, in the first volume of his celebrated book "The art of Computer Programming", observed that the permutations that can be computed (or, equivalently, sorted) by some particular data structures can be characterized in terms of pattern avoidance. In more recent years, the topic was reopened several times, while often in terms of sortable permutations rather than computable ones. The idea to sort permutations by using one of Knuth’s devices suggests to look for a deterministic procedure that decides, in linear time, if there exists a sequence of operations which is able to convert a given permutation into the identical one. In this thesis we show that, for the stack and the restricted deques, there exists an unique way to implement such a procedure. Moreover, we use these sorting procedures to create new sorting algorithms, and we prove some unexpected commutation properties between these procedures and the base step of bubblesort. We also show that the permutations that can be sorted by a combination of the base steps of bubblesort and its dual can be expressed, once again, in terms of pattern avoidance. In the final chapter we give an alternative proof of some enumerative results, in particular for the classes of permutations that can be sorted by the two restricted deques. It is well-known that the permutations that can be sorted through a restricted deque are counted by the Schrӧder numbers. In the thesis, we show how the deterministic sorting procedures yield a bijection between sortable permutations and Schrӧder paths.
Resumo:
The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.
Resumo:
Principale obiettivo della ricerca è quello di ricostruire lo stato dell’arte in materia di sanità elettronica e Fascicolo Sanitario Elettronico, con una precipua attenzione ai temi della protezione dei dati personali e dell’interoperabilità. A tal fine sono stati esaminati i documenti, vincolanti e non, dell’Unione europea nonché selezionati progetti europei e nazionali (come “Smart Open Services for European Patients” (EU); “Elektronische Gesundheitsakte” (Austria); “MedCom” (Danimarca); “Infrastruttura tecnologica del Fascicolo Sanitario Elettronico”, “OpenInFSE: Realizzazione di un’infrastruttura operativa a supporto dell’interoperabilità delle soluzioni territoriali di fascicolo sanitario elettronico nel contesto del sistema pubblico di connettività”, “Evoluzione e interoperabilità tecnologica del Fascicolo Sanitario Elettronico”, “IPSE - Sperimentazione di un sistema per l’interoperabilità europea e nazionale delle soluzioni di Fascicolo Sanitario Elettronico: componenti Patient Summary e ePrescription” (Italia)). Le analisi giuridiche e tecniche mostrano il bisogno urgente di definire modelli che incoraggino l’utilizzo di dati sanitari ed implementino strategie effettive per l’utilizzo con finalità secondarie di dati sanitari digitali , come Open Data e Linked Open Data. L’armonizzazione giuridica e tecnologica è vista come aspetto strategico per ridurre i conflitti in materia di protezione di dati personali esistenti nei Paesi membri nonché la mancanza di interoperabilità tra i sistemi informativi europei sui Fascicoli Sanitari Elettronici. A questo scopo sono state individuate tre linee guida: (1) armonizzazione normativa, (2) armonizzazione delle regole, (3) armonizzazione del design dei sistemi informativi. I principi della Privacy by Design (“prottivi” e “win-win”), così come gli standard del Semantic Web, sono considerate chiavi risolutive per il suddetto cambiamento.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.