2 resultados para Second-order

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.