4 resultados para Second-Order Recurrence Relations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
This paper studies relational goods as immaterial assets creating real effects in society. The work starts answering to this question: what kind of effects do relational goods produce? After an accurate literature examination we suppose relational goods are social relations of second order. In the hypotesis they come from the emergence of two distinct social relations: interpersonal and reflexive relations. We describe empirical evidences of these emergent assets in social life and we test the effects they produce with a model. In the work we focus on four targets. First of all we describe the emergence of relational goods through a mathematical model. Then we individualize social realities where relational goods show evident effects and we outline our scientific hypotesis. The following step consists in the formulation of empirical tests. At last we explain final results. Our aim is to set apart the constitutive structure of relational goods into a checkable model coherently with the empirical evidences shown in the research. In the study we use multi-variate analysis techniques to see relational goods in a new way and we use qualitative and quantitative strategies. Relational goods are analysed both as dependent and independent variable in order to consider causative factors acting in a black-box model. Moreover we analyse effects of relational goods inside social spheres, especially in third sector and capitalistic economy. Finally we attain to effective indexes of relational goods in order to compare them with some performance indexes.
Resumo:
Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.