5 resultados para Second Order Parabolic Heat Equation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.
Resumo:
This Doctoral Thesis focuses on the study of individual behaviours as a result of organizational affiliation. The objective is to assess the Entrepreneurial Orientation of individuals proving the existence of a set of antecedents to that measure returning a structural model of its micro-foundation. Relying on the developed measurement model, I address the issue whether some Entrepreneurs experience different behaviours as a result of their academic affiliation, comparing a sample of ‘Academic Entrepreneurs’ to a control sample of ‘Private Entrepreneurs’ affiliated to a matched sample of Academic Spin-offs and Private Start-ups. Building on the Theory of the Planned Behaviour, proposed by Ajzen (1991), I present a model of causal antecedents of Entrepreneurial Orientation on constructs extensively used and validated, both from a theoretical and empirical perspective, in sociological and psychological studies. I focus my investigation on five major domains: (a) Situationally Specific Motivation, (b) Personal Traits and Characteristics, (c) Individual Skills, (d) Perception of the Business Environment and (e) Entrepreneurial Orientation Related Dimensions. I rely on a sample of 200 Entrepreneurs, affiliated to a matched sample of 72 Academic Spin-offs and Private Start-ups. Firms are matched by Industry, Year of Establishment and Localization and they are all located in the Emilia Romagna region, in northern Italy. I’ve gathered data by face to face interviews and used a Structural Equation Modeling technique (Lisrel 8.80, Joreskog, K., & Sorbom, D. 2006) to perform the empirical analysis. The results show that Entrepreneurial Orientation is a multi-dimensional micro-founded construct which can be better represented by a Second-Order Model. The t-tests on the latent means reveal that the Academic Entrepreneurs differ in terms of: Risk taking, Passion, Procedural and Organizational Skills, Perception of the Government, Context and University Supports. The Structural models also reveal that the main differences between the two groups lay in the predicting power of Technical Skills, Perceived Context Support and Perceived University Support in explaining the Entrepreneurial Orientation Related Dimensions.
Resumo:
We propose an extension of the approach provided by Kluppelberg and Kuhn (2009) for inference on second-order structure moments. As in Kluppelberg and Kuhn (2009) we adopt a copula-based approach instead of assuming normal distribution for the variables, thus relaxing the equality in distribution assumption. A new copula-based estimator for structure moments is investigated. The methodology provided by Kluppelberg and Kuhn (2009) is also extended considering the copulas associated with the family of Eyraud-Farlie-Gumbel-Morgenstern distribution functions (Kotz, Balakrishnan, and Johnson, 2000, Equation 44.73). Finally, a comprehensive simulation study and an application to real financial data are performed in order to compare the different approaches.