18 resultados para SOFT-TISSUE PROFILE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 3D human movement analysis performed using stereophotogrammetric systems and skin markers, bone pose can only be estimated in an indirect fashion. During a movement, soft tissue deformations make the markers move with respect to the underlying bone generating soft tissue artefact (STA). STA has devastating effects on bone pose estimation and its compensation remains an open question. The aim of this PhD thesis was to contribute to the solution of this crucial issue. Modelling STA using measurable trial-specific variables is a fundamental prerequisite for its removal from marker trajectories. Two STA model architectures are proposed. Initially, a thigh marker-level artefact model is presented. STA was modelled as a linear combination of joint angles involved in the movement. This model was calibrated using ex-vivo and in-vivo STA invasive measures. The considerable number of model parameters led to defining STA approximations. Three definitions were proposed to represent STA as a series of modes: individual marker displacements, marker-cluster geometrical transformations (MCGT), and skin envelope shape variations. Modes were selected using two criteria: one based on modal energy and another on the selection of modes chosen a priori. The MCGT allows to select either rigid or non-rigid STA components. It was also empirically demonstrated that only the rigid component affects joint kinematics, regardless of the non-rigid amplitude. Therefore, a model of thigh and shank STA rigid component at cluster-level was then defined. An acceptable trade-off between STA compensation effectiveness and number of parameters can be obtained, improving joint kinematics accuracy. The obtained results lead to two main potential applications: the proposed models can generate realistic STAs for simulation purposes to compare different skeletal kinematics estimators; and, more importantly, focusing only on the STA rigid component, the model attains a satisfactory STA reconstruction with less parameters, facilitating its incorporation in an pose estimator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumors involving bone and soft tissues are extremely challenging situations. With the recent advances of multi-modal treatment, not only the type of surgery has moved from amputation to limb-sparing procedures, but also the survivorship has improved considerably and reconstructive techniques have the goal to allow a considerably higher quality of life. In bone reconstruction, tissue engineering strategies are the main area of research. Re-vascularization and re-vitalisation of a massive allograft would considerably improve the outcome of biological reconstructions. Using a rabbit animal model, in this study we showed that, by implanting a vascular pedicle inside a weight bearing massive cortical allograft, the bone regeneration inside the allograft was higher compared to the non-vascularized implants, given the patency of the vascular pedicle. Improvement in the animal model and the addition of Stem Cells and Growth factors will allow a further improvement in the results. In soft tissue tumors, free and pedicled flaps have been proven to be of great help as reconstruction strategies. In this study we analyzed the functional and overall outcome of 14 patients who received a re-innervated vascularized flap. We have demonstrated that the use of the innovative technique of motor re-innervated muscular flaps is effective when the resection involves important functional compartments of the upper or lower limb, with no increase of post-operative complications. Although there was no direct comparison between this type of reconstruction and the standard non-innervated reconstruction, we underlined the remarkable high overall functional scores and patient satisfaction following this procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research for new biocompatible and easily implantable materials continuously proposes new molecules and new substances with biological, chemical and physical characteristics, that are more and more adapted to aesthetic and reconstructive surgery and to the development of biomedical devices such as cardiovascular prostheses. Two classes of polymeric biomaterials seem to meet better these requirements: “hydrogels” , which includes polyalkylimide (PAI) and polyvinylalcohol (PVA) and “elastomers”, which includes polyurethanes (PUs). The first ones in the last decade have had a great application for soft tissue augmentation, due to their similarity to this tissue for their high water content, elasticity and oxygen permeability (Dini et al., 2005). The second ones, on the contrary, are widely used in cardiovascular applications (catheters, vascular grafts, ventricular assist devices, total artificial hearts) due to their good mechanical properties and hemocompatibility (Zdrahala R.J. and Zdrahala I.J., 1999). In the biocompatibility evaluation of these synthetic polymers, that is important for its potential use in clinical applications, a fundamental aspect is the knowledge of the polymers cytotoxicity and the effect of their interaction with cells, in particular with the cell populations involved in the inflammatory responses, i.e. monocyte/macrophages. In consideration of what above said, the aim of this study is the comprehension of the in vitro effect of PAI, PVA and PU on three cell lines that represent three different stages of macrophagic differentiation: U937 pro-monocytes, THP-1 monocytes and RAW 264.7 macrophages. Cytotoxicity was evaluated by measuring the rate of viability with MTT, Neutral Red and morphological analysis at light microscope in time-course dependent experiments. The influence of these polymers on monocyte/macrophage activation in terms of cells adhesion, monocyte differentiation in macrophages, antigens distribution, aspecific phagocytosis, fluid-phase endocitosis, pro-inflammatory cytokine (TNF-α, IL-1β, IL-6) and nitric oxide (NO) release was evaluated. In conclusion, our studies have indicated that the three different polymeric biomaterials are highly biocompatible, since they scarcely affected viability of U937, THP-1 and RAW 264.7 cells. Moreover, we have found that even though hydrogels and polyurethane influences monocyte/macrophage differentiation (depending on the particular type of cell and polymer), they are immunocompatible since they not induced significantly high cytokine release. For these reasons their clinical applications are strongly encouraged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. The aim of this study was to identify molecular events involved in rhabdomyosarcoma onset for the development of new therapeutic approaches against specific molecular targets. BALB-p53neu mice develop pelvic rhabdomyosarcoma and combines the activation of HER-2/neu oncogene with the inactivation of an allele of p53 oncosuppressor gene. Gene expression profiling led to the identification of genes potentially involved in rhabdomyosarcoma genesis and therefore of candidate targets. The pattern of expression of p53, HER-2/neu, CDKN2A/p19ARF and IGF-2 suggested that these alterations might be involved in gender-, site- and strain-specific development of rhabdomyosarcoma. Other genes such as CDKN1A/p21 might be involved. The role of IGF-2, CDKN2A/p19ARF and CDKN1A/p21 in tumor growth was investigated with siRNA in murine rhabdomyosarcoma cells. Silencing of p19ARF and p21 induced inhibition of growth and of migration ability, indicating a possible pro-tumor and pro-metastatic role in rhabdomyosarcoma in absence of p53. In addition the autocrine IGF-2/IGF-1R loop found in early phases of cancer progression strengthens its key role in sustaining rhabdomyosarcoma growth. As rhabdomyosarcoma displays defective myogenic differentiation, a therapeutic approach aimed at enhancing myogenic differentiation of rhabdomyosarcoma cells. Forced expression of myogenin was able to restore myogenic differentiation, significantly reduced cell motility and impaired tumor growth and metastatic spread. IL-4 treatment increased rhabdomyosarcoma cell growth, decreased myogenin expression and promoted migration of cells lacking myogenin. Another approach was based on small kinase inhibitors. Agents specifically targeting members of the HER family (Lapatinib), of the IGF system (NVP-AEW541) or downstream signal transducers (NVP-BEZ235) were investigated in vitro in human rhabdomyosarcoma cell lines as therapeutic anti-tumor and anti-metastatic tools. The major effects were obtained with NVP-BEZ235 treatment that was able to strongly inhibit cell growth in vitro and showed anti-metastatic effects in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1.Ricostruzione mandibolare La ricostruzione mandibolare è comunemente eseguita utilizzando un lembo libero perone. Il metodo convenzionale (indiretto) di Computer Aided Design e Computer Aided Manifacturing prevede il modellamento manuale preoperatorio di una placca di osteosintesi standard su un modello stereolitografico della mandibola. Un metodo innovativo CAD CAM diretto comprende 3 fasi: 1) pianificazione virtuale 2) computer aided design della dima di taglio mandibolari, della dima di taglio del perone e della placca di osteosintesi e 3) Computer Aided Manufacturing dei 3 dispositivi chirurgici personalizzati. 7 ricostruzioni mandibolari sono state effettuate con il metodo diretto. I risultati raggiunti e le modalità di pianificazione sono descritte e discusse. La progettazione assistita da computer e la tecnica di fabbricazione assistita da computer facilita un'accurata ricostruzione mandibolare ed apporta un miglioramento statisticamente significativo rispetto al metodo convenzionale. 2. Cavità orale e orofaringe Un metodo ricostruttivo standard per la cavità orale e l'orofaringe viene descritto. 163 pazienti affetti da cancro della cavità orale e dell'orofaringe, sono stati trattati dal 1992 al 2012 eseguendo un totale di 175 lembi liberi. La strategia chirurgica è descritta in termini di scelta del lembo, modellamento ed insetting. I modelli bidimensionali sono utilizzati per pianificare una ricostruzione tridimensionale con il miglior risultato funzionale ed estetico. I modelli, la scelta del lembo e l' insetting sono descritti per ogni regione. Complicazioni e risultati funzionali sono stati valutati sistematicamente. I risultati hanno mostrato un buon recupero funzionale con le tecniche ricostruttive descritte. Viene proposto un algoritmo ricostruttivo basato su template standard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi valuta l’efficacia della tecnica delle griglie in titanio con osso particolato nella ricostruzione dei difetti alveolari tridimensionali ai fini della riabilitazione dentale implanto-protesica. Il primo studio ha considerato la metodica in termini di complicanze post-operatorie e di risultati implanto-protesici. Sono stati considerati 24 pazienti con difetti tridimensionali trattati con l’applicazione di 34 griglie di titanio e osso particolato e riabilitati protesicamente dopo circa 8-9 mesi. 4 su 34 griglie sono state rimosse prima dell’inserimento implantare (11.76% di fallimento totale); 20 su 34 griglie si sono esposte per deiscenza dei tessuti molli (58.82% di complicanze): 4 (11.77%) prima e 16 (47.05%) dopo le prime 4-6 settimane dall’intervento; in nessun caso il piano di trattamento implanto-protesico ha subito variazioni. Dopo un follow-up medio di 20 (3-48) mesi dal carico protesico, nessuno degli 88 impianti ha perso la propria osteo-integrazione (100% di sopravvivenza implantare), con un valore complessivo di successo implantare di 82.9%. Il secondo studio ha calcolato in termini volumetrici la ricostruzione ossea ottenuta con griglie e la sua corre-lazione con l’estensione dell’esposizione e la tempistica del suo verificarsi. Sono stati valutati 12 pazienti con 15 difetti alveolari. Per ciascun sito sono state studiate le immagini TC con un software dedicato per misurare i volumi in tre dimensioni: il volume di osso non formatosi rispetto a quanto pianificato, lacking bone volume (LBV), è stato calcolato sottraendo il volume di osso ricostruito, reconstructed bone volume (RBV) in fase di ri-entro chirurgico dal volume di osso pianificato pre-operativamente, planned bone volume (PBV). LBV è risultato direttamente proporzionale all’area di esposizione della griglia, con un valore del 16.3% di LBV per ogni cm2 di griglia esposta. Si sono evidenziate, inoltre, correlazioni positive tra LBV , la tempistica precoce di esposizione e il valore di PBV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nella presente tesi indaghiamo la potenzialità di LCM e Reverse Phase Protein microarray negli studi clinici. Si analizza la possibilità di creare una bio banca con line cellular primarie, al fine di conseguire drug test di sensibilità prima di decidere il trattamento da somministrare ai singoli pazienti. Sono stati ottenuti profili proteomici da biopsie pre e post terapia. I risultati dimostrano che questa piattaforma mostra il meccanismo di resistenza acquisito durante la terapia biologica. Questo ci ha portato ad analizzare una possibile stratificazione per pazienti con mCRC . I dati hanno rivelato distinti pathway di attivazione tra metastasi resecabile e non resecabili. I risultati mostrano inoltre due potenziali bersagli farmacologici. Ma la valutazione dell'intero tumore tramite singole biopsie sembra essere un problema a causa dell’eterogeneità intratumorale a livello genomico. Abbiamo indagato questo problema a livello dell'architettura del segnale in campioni di mCRC e ccRCC . I risultati indicano una somiglianza complessiva nei profili proteomici all'interno dello stesso tumore. Considerando che una singola biopsia è rappresentativa di un intera lesione , abbiamo studiato la possibilità di creare linee di cellule primarie, per valutare il profilo molecolare di ogni paziente. Fino ad oggi non c'era un protocollo per creare linee cellulari immortalizzate senza alcuna variazione genetica . abbiamo cosiderato, però, l'approccio innovativo delle CRCs. Ad oggi , non è ancora chiaro se tali cellule mimino il profilo dei tessuti oppure I passaggi in vitro modifichino i loro pathways . Sulla base di un modello di topo , i nostri dati mostrano un profilo di proteomica simile tra le linee di cellule e tessuti di topo LCM. In conclusione, i nostri dati dimostrano l'utilità della piattaforma LCM / RPPA nella sperimentazione clinica e la possibilità di creare una bio - banca di linee cellulari primarie, per migliorare la decisione del trattamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: sebbene la letteratura recente abbia suggerito che l’utilizzo degli impianti corti possa rappresentare una alternative preferibile alle procedure di rigenerazione ossea nelle aree posteriori atrofiche, perché è un trattamento più semplice e con meno complicazioni, esistono solo pochi studi a medio e lungo termine che abbiano comparato queste tecniche. Scopo: lo scopo di questo studio retrospettivo è quello di valutare se gli impianti corti (6-8 mm) (gruppo impianti corti) possano presentare percentuali di sopravvivenza e valori di riassorbimento osseo marginali simili a impianti di dimensioni standard (≥11 mm) inseriti contemporaneamente ad una grande rialzo di seno mascellare. Materiali e Metodi: in totale, 101 pazienti sono stati inclusi: 48 nel gruppo impianti corti e 53 nel gruppo seno. In ciascun paziente da 1 a 3 impianti sono stati inseriti e tenuti sommersi per 4-6 mesi. I parametri clinici e radiografici valutati sono: i fallimenti implantari, le complicazioni, lo stato dei tessuti molli, e il riassorbimento osseo marginale. Tutti i pazienti sono stati seguiti per almeno 3 anni dal posizionamento implantare. Risultati: il periodo di osservazione medio è stato di 43.47 ± 6.1 mesi per il gruppo impianti corti e 47.03 ± 7.46 mesi per il gruppo seno. Due su 101 impianti corti e 6 su 108 impianti standard sono falliti. Al follow-up finale, si è riscontrato un riassorbimento osseo medio di 0.47 ± 0.48 mm nel gruppo impianti corti versus 0.64 ± 0.58 mm nel gruppo seno. Non sono presenti differenze statisticamente significative fra i gruppi in termini di fallimenti implantari, complicazioni protesiche, tessuti molli, e riassorbimento osseo. Il gruppo seno ha presentato, invece, un maggior numero di complicazioni chirurgiche. Conclusioni: entrambe le tecniche hanno dimostrato un simile tasso di successo clinico e radiografico, ma gli impianti corti hanno ridotto il numero di complicazioni chirurgiche.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Open fractures of the leg represent a severe trauma. The combined approach, shared between plastic and orthopaedic surgeons, is considered to be important, although this multidisciplinary treatment is not routinely performed. Aim of this study was to verify whether the orthoplastic treatment is of any advantage over the traditional simply orthopedic treatment, through a multicentric inclusion of these unfrequent injuries into a prospective study. Material and methods: The following trauma centres were involved: Rizzoli Orthopaedic Institute/University of Bologna (leading centre) and Maggiore Hospital (Bologna, Italy), Frenchay Hospital (Bristol, United Kingdom), Jinnah Hospital (Lahore, Pakistan). All patients consecutively hospitalized in the mentioned centres between January 2012 and December 2013 due to tibial open fractures were included in the study and prospectively followed up to December 2014. Demographics and other clinical features were recorded, including the type of treatment (orthopaedic or orthoplastic). The considered outcome measures included duration of hospitalization, time for bone union and soft tissue closure, Enneking score at 3, 6 and 12 months, the incidence of osteomyelitis and other complications. Results: A total of 164 patients were included in the study. Out of them 68% were treated with an orthoplastic approach, whereas 32% received a purely orthopedic treatment. All considered outcome measures showed to be improved by the orthoplastic approach, compared to the orthopaedic one: time for soft tissue closure (2 versus 25 weeks), duration of hospital stay (22 versus 55 days), time for bone union (6 versus 8.5 months) , number of additional operations (0.6 versus 1.2) and functional recovery of the limb at 12 months (27 versus 19, Enneking’s score). All results were statistically significant. Conclusion: The combined orthoplastic approach to the treatment of open tibia fractures, in particular for high grade injuries (Gustilo 3B), is proven to improve the outcome of these severe injuries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I sarcomi dei tessuti molli sono un gruppo eterogeneo di tumori maligni di origine mesenchimale che si sviluppa nel tessuto connettivo. Il controllo locale mediante escissione chirurgica con margini ampi associato alla radioterapia e chemioterapia è il trattamento di scelta. Negli ultimi anni le nuove scoperte in campo biologico e clinico hanno sottolineato che i diversi istotipi posso essere considerati come entità distinte con differente sensibilità alla chemioterapia pertanto questa deve essere somministrata come trattamento specifico basato sull’istologia. Tra Ottobre 2011 e Settembre 2014 sono stati inclusi nel protocollo di studio 49 pazienti con sarcomi dei tessuti molli di età media alla diagnosi 48 anni (range: 20 - 68 anni). I tumori primitivi più frequenti sono: liposarcoma mixoide, sarcoma pleomorfo indifferenziato, sarcoma sinoviale. Le sedi di insorgenza del tumore erano più frequentemente la coscia, il braccio e la gamba. 35 pazienti sono stati arruolati nel Braccio A e trattati con chemioterapia standard con epirubicina+ifosfamide, 14 sono stati arruolati nel Braccio B e trattati con chemioterapia basata sull’istotipo. I dati emersi da questo studio suggeriscono che le recidive locali sembrano essere correlate favorevolmente alla radioterapia ed ai margini chirurgici adeguati mentre la chemioterapia non sembra avere un ruolo sul controllo locale della malattia. Anche se l'uso di terapie mirate, che hanno profili di tossicità più favorevoli e sono quindi meglio tollerate rispetto ai farmaci citotossici è promettente, tali farmaci hanno prodotto finora risultati limitati. Apparentemente l’insieme delle terapie mirate non sembra funzionare meglio delle terapie standard, tuttavia esse devono essere esaminate per singolo istotipo e confrontate con il braccio di controllo. Sono necessari studi randomizzati controllati su ampie casistiche per valutare l’efficacia delle terapie mirate sui differenti istotipi di sarcomi dei tessuti molli. Inoltre, nuovi farmaci, nuove combinazioni e nuovi schemi posologici dovranno essere esaminati per ottimizzare la terapia.