6 resultados para SEED IMPLANTATION
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.
Resumo:
Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.
Resumo:
The thesis aims to expose the advances achieved in the practices of captive breeding of the European eel (Anguilla anguilla). Aspects investigated concern both approaches livestock (breeding selection, response to hormonal stimulation, reproductive performance, incubation of eggs) and physiological aspects (endocrine plasma profiles of players), as well as engineering aspects. Studies conducted on various populations of wild eel have shown that the main determining factor in the selection of wild females destined to captive breeding must be the Silver Index which may determine the stage of pubertal development. The hormonal induction protocol adopted, with increasing doses of carp pituitary extract, it has proven useful to ovarian development, with a synchronization effect that is positively reflected on egg production. The studies on the effects of photoperiod show how the condition of total darkness can positively influence practices of reproductions in captivity. The effects of photoperiod were also investigated at the physiological level, observing the plasma levels of steroids ( E2, T) and thyroid hormones (T3 and T4) and the expression in the liver of vitellogenin (vtg1 and vtg2) and estradiol membrane receptor (ESR1). From the comparison between spontaneous deposition and insemination techniques through the stripping is inferred as the first ports to a better qualitative and quantitative yield in the production of eggs capable of being fertilized, also the presence of a percentage of oocytes completely transparent can be used to obtain eggs at a good rate of fertility. Finally, the design and implementation of a system for recirculating aquaculture suited to meet the needs of species-specific eel showed how to improve the reproductive results, it would be preferable to adopt low-flow and low density incubation.