6 resultados para Rna-protein interaction
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A systematic characterization of the composition and structure of the bacterial cell-surface proteome and its complexes can provide an invaluable tool for its comprehensive understanding. The knowledge of protein complexes composition and structure could offer new, more effective targets for a more specific and consequently effective immune response against a complex instead of a single protein. Large-scale protein-protein interaction screens are the first step towards the identification of complexes and their attribution to specific pathways. Currently, several methods exist for identifying protein interactions and protein microarrays provide the most appealing alternative to existing techniques for a high throughput screening of protein-protein interactions in vitro under reasonably straightforward conditions. In this study approximately 100 proteins of Group A Streptococcus (GAS) predicted to be secreted or surface exposed by genomic and proteomic approaches were purified in a His-tagged form and used to generate protein microarrays on nitrocellulose-coated slides. To identify protein-protein interactions each purified protein was then labeled with biotin, hybridized to the microarray and interactions were detected with Cy3-labelled streptavidin. Only reciprocal interactions, i. e. binding of the same two interactors irrespective of which of the two partners is in solid-phase or in solution, were taken as bona fide protein-protein interactions. Using this approach, we have identified 20 interactors of one of the potent toxins secreted by GAS and known as superantigens. Several of these interactors belong to the molecular chaperone or protein folding catalyst families and presumably are involved in the secretion and folding of the superantigen. In addition, a very interesting interaction was found between the superantigen and the substrate binding subunit of a well characterized ABC transporter. This finding opens a new perspective on the current understanding of how superantigens are modified by the bacterial cell in order to become major players in causing disease.
Resumo:
9-hydroxystearic acid (9-HSA) is an endogenous lipoperoxidation product and its administration to HT29, a colon adenocarcinoma cell line, induced a proliferative arrest in G0/G1 phase mediated by a direct activation of the p21WAF1 gene, bypassing p53. We have previously shown that 9-HSA controls cell growth and differentiation by inhibiting histone deacetylase 1 (HDAC1) activity, showing interesting features as a new anticancer drug. The interaction of 9-HSA with the catalytic site of the 3D model has been tested with a docking procedure: noticeably, when interacting with the site, the (R)-9-enantiomer is more stable than the (S) one. Thus, in this study, (R)- and (S)-9-HSA were synthesized and their biological activity tested in HT29 cells. At the concentration of 50 M (R)-9-HSA showed a stronger antiproliferative effect than the (S) isomer, as indicated by the growth arrest in G0/G1. The inhibitory effect of (S)-9-HSA on HDAC1, HDAC2 and HDAC3 activity was less effective than that of the (R)-9-HSA in vitro, and the inhibitory activity of both the (R)- and the (S)-9-HSA isomer, was higher on HDAC1 compared to HDAC2 and HDAC3, thus demonstrating the stereospecific and selective interaction of 9-HSA with HDAC1. In addition, histone hyperacetylation caused by 9-HSA treatment was examined by an innovative HPLC/ESI/MS method. Analysis on histones isolated from control and treated HT29 confirmed the higher potency of (R)-9-HSA compared to (S)-9-HSA, severely affecting H2A-2 and H4 acetylation. On the other side, it seemed of interest to determine whether the G0/G1 arrest of HT29 cell proliferation could be bypassed by the stimulation with the growth factor EGF. Our results showed that 9-HSA-treated cells were not only prevented from proliferating, but also showed a decreased [3H]thymidine incorporation after EGF stimulation. In this condition, HT29 cells expressed very low levels of cyclin D1, that didn’t colocalize with HDAC1. These results suggested that the cyclin D1/HDAC1 complex is required for proliferation. Furthermore, in the effort of understanding the possible mechanisms of this effect, we have analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. EGF/EGFR/HDAC1 complex quantitatively increases in 9-HSA-treated cells but not in serum starved cells after EGF stimulation. Our data suggested that 9-HSA interaction with the catalytic site of the HDAC1 disrupts the HDAC1/cyclin D1 complex and favors EGF/EGFR recruitment by HDAC1, thus enhancing 9-HSA antiproliferative effects. In conclusion 9-HSA is a promising HDAC inhibitor with high selectivity and specificity, capable of inducing cell cycle arrest and histone hyperacetylation, but also able to modulate HDAC1 protein interaction. All these aspects may contribute to the potency of this new antitumor agent.
Resumo:
Urease is a nickel-dependent enzyme that catalyzes hydrolysis of urea in the last step of organic nitrogen mineralization. Its active site contains a dinuclear center for Ni(II) ions that must be inserted into the apo-enzyme through the action of four accessory proteins (UreD, UreE, UreF, UreG) leading to activation of urease. UreE, acting as a metallo-chaperone, delivers Ni(II) to the preformed complex of apo-urease-UreDFG and has the capability to enhance the GTPase activity of UreG. This study, focused on characterization of UreE from Sporosarcina pasteurii (SpUreE), represents a piece of information on the structure/mobility-function relationships that control nickel binding by SpUreE and its interaction with SpUreG. A calorimetric analysis revealed the occurrence of a binding event between these proteins with positive cooperativity and a stoichiometry consistent with the formation of the (UreE)2-(UreG)2 hetero-oligomer complex. Chemical Shift Perturbations induced by the protein-protein interaction were analyzed using high-resolution NMR spectroscopy, which allowed to characterize the molecular details of the protein surface of SpUreE involved in the complex formation with SpUreG. Moreover, backbone dynamic properties of SpUreE, determined using 15N relaxation analysis, revealed a general mobility in the nanoseconds time-scale, with the fastest motions observed at the C-termini. The latter analysis made it possible for the first time to characterize of the C-terminal portions, known to contain key residues for metal ion binding, that were not observed in the crystal structure of UreE because of disorder. The residues belonging to this portion of SpUreE feature large CSPs upon addition of SpUreG, showing that their chemical environment is directly affected by protein-protein interaction. Metal ion selectivity and affinity of SpUreE for cognate Ni(II) and non cognate Zn(II) metal ions were determined, and the ability of the protein to select Ni(II) over Zn(II), in consistency with the proposed role in Ni(II) cations transport, was established.
Resumo:
Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, is included within viruses transmitted through the soil from plasmodiophorid as Polymyxa betae. BNYVV is the causal agent of Rhizomania, which induces abnormal rootlet proliferation and is widespread in the sugar beet growing areas in Europe, Asia and America; for review see (Peltier et al., 2008). In this latter continent, Beet soil-borne mosaic virus (BSBMV) has been identified (Lee et al., 2001) and belongs to the benyvirus genus together with BNYVV, both vectored by P. betae. BSBMV is widely distributed only in the United States and it has not been reported yet in others countries. It was first identified in Texas as a sugar beet virus morphologically similar but serologically distinct to BNYVV. Subsequent sequence analysis of BSBMV RNAs evidenced similar genomic organization to that of BNYVV but sufficient molecular differences to distinct BSBMV and BNYVV in two different species (Rush et al., 2003). Benyviruses field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs -1 contains a single long ORF encoding polypeptide that shares amino acid homology with known viral RNA-dependent RNA polymerases (RdRp) and helicases. RNAs -2 contains six ORFs: capsid protein (CP), one readthrough protein, triple gene block proteins (TGB) that are required for cell-to-cell virus movement and the sixth 14 kDa ORF is a post-translation gene silencing suppressor. RNAs -3 is involved on disease symptoms and is essential for virus systemic movement. BSBMV RNA-3 can be trans-replicated, trans-encapsidated by the BNYVV helper strain (RNA-1 and -2) (Ratti et al., 2009). BNYVV RNA-4 encoded one 31 kDa protein and is essential for vector interactions and virus transmission by P. betae (Rahim et al., 2007). BNYVV RNA-5 encoded 26 kDa protein that improve virus infections and accumulation in the hosts. We are interest on BSBMV effect on Rhizomania studies using powerful tools as full-length infectious cDNA clones. B-type full-length infectious cDNA clones are available (Quillet et al., 1989) as well as A/P-type RNA-3, -4 and -5 from BNYVV (unpublished). A-type BNYVV full-length clones are also available, but RNA-1 cDNA clone still need to be modified. During the PhD program, we start production of BSBMV full-length cDNA clones and we investigate molecular interactions between plant and Benyviruses exploiting biological, epidemiological and molecular similarities/divergences between BSBMV and BNYVV. During my PhD researchrs we obtained full length infectious cDNA clones of BSBMV RNA-1 and -2 and we demonstrate that they transcripts are replicated and packaged in planta and able to substitute BNYVV RNA-1 or RNA-2 in a chimeric viral progeny (BSBMV RNA-1 + BNYVV RNA-2 or BNYVV RNA-1 + BSBMV RNA-2). During BSBMV full-length cDNA clones production, unexpected 1,730 nts long form of BSBMV RNA-4 has been detected from sugar beet roots grown on BSBMV infected soil. Sequence analysis of the new BSBMV RNA-4 form revealed high identity (~100%) with published version of BSBMV RNA-4 sequence (NC_003508) between nucleotides 1-608 and 1,138-1,730, however the new form shows 528 additionally nucleotides between positions 608-1,138 (FJ424610). Two putative ORFs has been identified, the first one (nucleotides 383 to 1,234), encode a protein with predicted mass of 32 kDa (p32) and the second one (nucleotides 885 to 1,244) express an expected product of 13 kDa (p13). As for BSBMV RNA-3 (Ratti et al., 2009), full-length BSBMV RNA-4 cDNA clone permitted to obtain infectious transcripts that BNYVV viral machinery (Stras12) is able to replicate and to encapsidate in planta. Moreover, we demonstrated that BSBMV RNA-4 can substitute BNYVV RNA-4 for an efficient transmission through the vector P. betae in Beta vulgaris plants, demonstrating a very high correlation between BNYVV and BSBMV. At the same time, using BNYVV helper strain, we studied BSBMV RNA-4’s protein expression in planta. We associated a local necrotic lesions phenotype to the p32 protein expression onto mechanically inoculated C. quinoa. Flag or GFP-tagged sequences of p32 and p13 have been expressed in viral context, using Rep3 replicons, based on BNYVV RNA-3. Western blot analyses of local lesions contents, using FLAG-specific antibody, revealed a high molecular weight protein, which suggest either a strong interaction of BSBMV RNA4’s protein with host protein(s) or post translational modifications. GFP-fusion sequences permitted the subcellular localization of BSBMV RNA4’s proteins. Moreover we demonstrated the absence of self-activation domains on p32 by yeast two hybrid system approaches. We also confirmed that p32 protein is essential for virus transmission by P. betae using BNYVV helper strain and BNYVV RNA-3 and we investigated its role by the use of different deleted forms of p32 protein. Serial mechanical inoculation of wild-type BSBMV on C. quinoa plants were performed every 7 days. Deleted form of BSBMV RNA-4 (1298 bp) appeared after 14 passages and its sequence analysis shows deletion of 433 nucleotides between positions 611 and 1044 of RNA-4 new form. We demonstrated that this deleted form can’t support transmission by P. betae using BNYVV helper strain and BNYVV RNA-3, moreover we confirmed our hypothesis that BSBMV RNA-4 described by Lee et al. (2001) is a deleted form. Interesting after 21 passages we identifed one chimeric form of BSBMV RNA-4 and BSBMV RNA-3 (1146 bp). Two putative ORFs has been identified on its sequence, the first one (nucleotides 383 to 562), encode a protein with predicted mass of 7 kDa (p7), corresponding to the N-terminal of p32 protein encoded by BSBMV RNA-4; the second one (nucleotides 562 to 789) express an expected product of 9 kDa (p9) corresponding to the C-terminal of p29 encoded by BSBMV RNA-3. Results obtained by our research in this topic opened new research lines that our laboratories will develop in a closely future. In particular BSBMV p32 and its mutated forms will be used to identify factors, as host or vector protein(s), involved in the virus transmission through P. betae. The new results could allow selection or production of sugar beet plants able to prevent virus transmission then able to reduce viral inoculum in the soil.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
Scopo: L’obiettivo del presente programma di studio è stato quello di identificare e validare nuovi possibili bersagli terapeutici per l’osteosarcoma (OS) partendo dall’analisi del chinoma umano. Risultati: L’analisi del profilo di espressione genica ottenuta su 21 campioni clinici di OS ad alto grado di malignità ha permesso di selezionare le seguenti chinasi di possibile rilevanza biologica per l’OS: AURK-A, AURK-B, CDK2, PIK3CA, PLK-1. Le chinasi selezionate sono state validate tramite RNA interference. Successivamente è stata valutata l’efficacia dei relativi inibitori specifici: VX-680 e ZM-447439 inibitori delle Aurora-chinasi, Roscovitina di CDK2 e NMS1 di PLK-1, già inclusi in studi clinici. In termini d’inibizione della crescita cellulare le linee sono risultate maggiomente sensibili ai farmaci VX-680 e NMS1. E’ stata osservata una minor sensibilità ai farmaci VX-680, ZM447439 e NMS1 nelle linee doxorubicina(DX)-resistenti (caratterizzate da elevati livelli di espressione di ABCB1), indicando questi farmaci come potenziali substrati di ABCB1. La Roscovitina, nonostante i valori di IC50 elevati, non sembrerebbe substrato di ABCB1. La validazione preclinica di VX-680 e ZM447439 è stata completata. La forte inibizione della crescita è causata da endoreduplicazione per mancata citodieresi con conseguente formazione di una popolazione iperploide e apoptosi. Inoltre, VX-680 inibisce la motilità e la capacità di formare colonie. Esperimenti di associazione farmacologica mostrano che VX-680 interagisce positivamente con tutti i chemioterapici convenzionali impiegati nel trattamento dell’OS. NMS-1 produce interazioni positive con la DX in linee cellulari DX-resistenti, probabilmente grazie all’effetto revertante esercitato su ABCB1. La Roscovitina produce interazioni positive con CDDP e DX nelle varianti resistenti, effetto probbilmente dovuto al ruolo di CDK2 nei meccanismi di riparo del DNA. Conclusioni: L’analisi in vitro dell’attività degli inibitori ha permesso di identificare VX-680 come nuovo farmaco di potenziale interesse clinico, soprattutto in virtù delle sue interazioni sinergiche con i chemioterapici di uso convenzionale nel trattamento dell’osteosarcoma.