12 resultados para Respiratory gated radiation therapy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obiettivo: valutare la tossicità ed il controllo di malattia di un trattamento radioterapico ipofrazionato ad alte dosi con tecnica ad intensità modulata (IMRT) guidata dalle immagini (IGRT) in pazienti affetti da carcinoma prostatico a rischio intermedio, alto ed altissimo di recidiva. Materiali e metodi: tutti i pazienti candidati al trattamento sono stati stadiati e sottoposti al posizionamento di tre “markers” fiduciali intraprostatici necessari per l’IGRT. Mediante tecnica SIB – IMRT sono stati erogati alla prostata 67,50 Gy in 25 frazioni (EQD2 = 81 Gy), alle vescichette 56,25 Gy in 25 frazioni (EQD2 = 60,35 Gy) e ai linfonodi pelvici, qualora irradiati, 50 Gy in 25 frazioni. La tossicità gastrointestinale (GI) e genitourinaria (GU) è stata valutata mediante i CTCAE v. 4.03. Per individuare una possibile correlazione tra i potenziali fattori di rischio e la tossicità registrata è stato utilizzato il test esatto di Fisher e la sopravvivenza libera da malattia è stata calcolata mediante il metodo di Kaplan-Meier. Risultati: sono stati arruolati 71 pazienti. Il follow up medio è di 19 mesi (3-35 mesi). Nessun paziente ha dovuto interrompere il trattamento per la tossicità acuta. Il 14% dei pazienti (10 casi) ha presentato una tossicità acuta GI G ≥ 2 e il 15% (11 pazienti) ha riportato una tossicità acuta GU G2. Per quanto riguarda la tossicità tardiva GI e GU G ≥ 2, essa è stata documentata, rispettivamente, nel 14% dei casi (9 pazienti) e nell’11% (7 pazienti). Non è stata riscontrata nessuna tossicità, acuta o cronica, G4. Nessun fattore di rischio correlava con la tossicità. La sopravvivenza libera da malattia a 2 anni è del 94%. Conclusioni: il trattamento radioterapico ipofrazionato ad alte dosi con IMRT-IGRT appare essere sicuro ed efficace. Sono comunque necessari ulteriori studi per confermare questi dati ed i presupposti radiobiologici dell’ipofrazionamento del carcinoma prostatico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio è stato condotto su pazienti affetti da carcinoma nasale trattati con radioterapia presso il Centro Oncologico Veterinario (Sasso Marconi, BO). Lo studio, prospettico, randomizzato e in doppio cieco, ha valutato l’efficacia del trattamento radioterapico in combinazione o meno con firocoxib, un inibitore selettivo dell’enzima ciclossigenasi 2 (COX-2). Sono stati inclusi pazienti con diagnosi istologica di carcinoma nasale sottoposti a stadiazione completa. I pazienti sono stati successivamente suddivisi in due gruppi in base alla tipologia di trattamento: radioterapia associata a firocoxib (Gruppo 1) o solo radioterapia (Gruppo 2). Dopo il trattamento, i pazienti sono stati monitorati a intervalli di 3 mesi sia clinicamente che mediante esami collaterali, al fine di valutare condizioni generali del paziente, un’eventuale tossicità dovuta alla somministrazione di firocoxib e la risposta oggettiva al trattamento. Per valutare la qualità di vita dei pazienti durante la terapia, è stato richiesto ai proprietari la compilazione mensile di un questionario. La mediana del tempo libero da progressione (PFI) è stata di 228 giorni (range 73-525) nel gruppo dei pazienti trattati con radioterapia e firocoxib e di 234 giorni (range 50-475) nei pazienti trattati solo con radioterapia. La sopravvivenza mediana (OS) nel Gruppo 1 è stata di 335 giorni (range 74-620) e di 244 giorni (range 85-505) nel Gruppo 2. Non si sono riscontrate differenze significative di PFI e OS tra i due gruppi. La presenza di metastasi ai linfonodi regionali condizionava negativamente PFI e sopravvivenza (P = 0.004). I pazienti trattati con firocoxib hanno mostrato un significativo beneficio in termini di qualità di vita rispetto ai pazienti trattati con sola radioterapia (P=0.008). La radioterapia può essere considerata un’efficace opzione terapeutica per i cani affetti da neoplasie nasali. Firocoxib non sembra migliorare significativamente i tempi di sopravvivenza, ma risulta utile al fine di garantire una migliore qualità di vita.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton radiation therapy is a form of external radiation that uses charged particles which have distinct physical advantages to deliver the majority of its dose in the target while minimizing the dose of radiation to normal tissues. In children who are particularly susceptible even at low and medium doses of radiation, the significant reduction of integral dose can potentially mitigate the incidence of side effects and improve quality of life. The aim of the first part of the thesis is to describe the physical and radiobiological properties of protons, the Proton Therapy Center of Trento (TCPT) active for clinical purpose since 2014, which use the most recent technique called active pencil beam scanning. The second part of the thesis describes the preliminary clinical results of 23 pediatric patients with central nervous system tumors as well as of two aggressive pediatric meningiomas treated with pencil beam scanning. All the patients were particularly well-suited candidates for proton therapy (PT) for possible benefits in terms of survival and incidence of acute and late side effects. We reported also a multicentric experience of 27 medulloblastoma patients (median age 6 years, M/F ratio 13/14) treated between 2015 and 2020 at TPTC coming from three Pediatric oncology centers: Bologna, Florence, and Ljubljana, with a focus on clinical results and toxicities related to radiotherapy (RT). Proton therapy was associated with mostly mild acute and late adverse effects and no cases of CNS necrosis or high grade of neuroradiological abnormailities. Comparable rates of survival and local control were obtained to those achievable with conventional RT. Finally, we performed a systematic review to specifically address the safety of PT for pediatric CNS patients, late side effects and clinical effectiveness after PT in this patient group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microenvironment in bone tumors is a dynamic entity composed of cells from different origins (immune cells, stromal cells, mesenchymal stem cells, endothelial cells, pericytes) and vascular structures surrounded by a matrix of different nature (bone, cartilage, myxoid). Interactions between cancer cells and tumor microenvironment (TME) are complex and can change as tumor progress, but are also crucial in determining response to cancer therapies. Chondrosarcoma is the second most frequent bone cancer in adult age, but its treatment still represents a challenge, for the intrinsic resistance to conventional chemotherapy and radiation therapy. This resistance is mainly due to pathological features, as dense matrix, scarce mitoses and poor vascularization, sustained by biological mechanisms only partially delucidated. Somatic mutation in the Krebs cycle enzyme isocytrate dehydrogenase (IDH) have been described in gliomas, acute myeloid leukemia, cholangiocarcinoma, melanoma, colorectal, prostate cancer, thyroid carcinoma and other cancers. In mesenchymal tumors IDH mutations are present in about 50% of central chondrosarcoma. IDH mutations are an early event in chondrosarcoma-genesis, and contribute to the acquisition of malignancy through the block of cellular differentiation, hypoxia induction through HIF stabilization, DNA methylation and alteration of cellular red-ox balance. While in gliomas IDH mutations confers a good prognosis, in chondrosarcoma IDH prognostic role is controversial in different reported series. First aim of this project is to define the prevalence and the prognostic role of IDH mutation in high grade central conventional chondrosarcoma patients treated at Istituto Ortopedico Rizzoli. Second aim is the critical revision of scientific literature to understand better how a genomic event in cancer cell can trigger alteration in the TME, through immune infiltrate reshaping, angiogenesis induction, metabolic and methylation rewiring. Third aim is to screen other sarcoma histotypes for the presence of IDH mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases due to mutations in mitochondrial DNA probably represent the most common form of metabolic disorders, including cancer, as highlighted in the last years. Approximately 300 mtDNA alterations have been identified as the genetic cause of mitochondrial diseases and one-third of these alterations are located in the coding genes for OXPHOS proteins. Despite progress in identification of their molecular mechanisms, little has been done with regard to the therapy. Recently, a particular gene therapy approach, namely allotopic expression, has been proposed and optimized, although the results obtained are rather controversial. In fact, this approach consists in synthesis of a wild-type version of mutated OXPHOS protein in the cytosolic compartment and in its import into mitochondria, but the available evidence is based only on the partial phenotype rescue and not on the demonstration of effective incorporation of the functional protein into respiratory complexes. In the present study, we took advantage of a previously analyzed cell model bearing the m.3571insC mutation in MTND1 gene for the ND1 subunit of respiratory chain complex I. This frame-shift mutation induces in fact translation of a truncated ND1 protein then degraded, causing complex I disassembly, and for this reason not in competition with that allotopically expressed. We show here that allotopic ND1 protein is correctly imported into mitochondria and incorporated in complex I, promoting its proper assembly and rescue of its function. This result allowed us to further confirm what we have previously demonstrated about the role of complex I in tumorigenesis process. Injection of the allotopic clone in nude mice showed indeed that the rescue of complex I assembly and function increases tumor growth, inducing stabilization of HIF1α, the master regulator of tumoral progression, and consequently its downstream gene expression activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental disease caused by mutations in the CDKL5 gene, characterized by early-onset epileptic seizures, intellectual disability, motor and visual impairment and respiratory dysregulation. Although pharmacological treatments are used to control seizures, there is currently no cure to ameliorate symptoms for CDD. Albeit delivery of a wild-type copy of the mutated gene to cells represents the most curative approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for brain gene therapy. The major one regards the low efficiency of gene delivery to the CNS by viral vectors. We used a secretable Igk-TATk-CDKL5 protein to enhance the efficiency of a gene therapy for CDD. In view of the properties of the Igk-chain leader sequence, the TATk-CDKL5 protein produced by infected cells is secreted via constitutive secretory pathways. Importantly, due to the transduction property of the TATk peptide, the secreted CDKL5 protein is internalized by cells. We compared the effects of a CDKL5 gene therapy with an IgK-TATk-CDKL5 gene therapy in a Cdkl5 KO mouse model to validate whether the Igk-TATk-CDKL5 approach significantly improve the therapeutic efficacy. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to a higher CDKL5 protein replacement and Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with Cdkl5 KO mice treated with the AAVPHP.B_CDKL5 vector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionizing radiations are important tools employed every day in the modern society. For example, in medicine they are routinely used for diagnostic and therapy. The large variety of applications leads to the need of novel, more efficient, low-cost ionizing radiation detectors with new functionalities. Personal dosimetry would benefit from wearable detectors able to conform to the body surfaces. Traditional semiconductors used for ionizing radiation direct detectors offer high performance but they are intrinsically stiff, brittle and require high voltages to operate. Hybrid lead-halide perovskites emerged recently as a novel class of materials for ionizing radiation detection. They combine high absorption coefficient, solution processability and high charge transport capability, enabling efficient and low-cost detection. The deposition from solution allows the fabrication of thin-film flexible devices. In this thesis, I studied the detection properties of different types of hybrid perovskites, deposited from solution in thin-film form, and tested under X-rays, gamma-rays and protons beams. I developed the first ultraflexible X-ray detector with exceptional conformability. The effect of coupling organic layers with perovskites was studied at the nanoscale giving a direct demonstration of trap passivation effect at the grain boundaries. Different perovskite formulations were deposited and tested to improve the film stability. I report about the longest aging studies on perovskite X-ray detectors showing that the addition of starch in the precursors’ solution can improve the stability in time with only a 7% decrease in sensitivity after 630 days of storage in ambient conditions. 2D perovskites were also explored as direct detector for X-rays and gamma-rays. Detection of 511 keV photons by a thin-film device is here demonstrated and was validated for monitoring a radiotracer injection. At last, a new approach has been used: a 2D/3Dmixed perovskite thin-film demonstrated to reliably detect 5 MeV protons, envisioning wearable dose monitoring during proton/hadron therapy treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-particle emitters, notably used in 224Ra-DaRT, have emerged as effective in overcoming radiation resistance and providing targeted cancer therapy. These emitters cause DNA double-strand breaks, visualizable in human lymphocytes. The 224Ra DaRT technique, using a decay chain from seeds, extends alpha particle range, achieving complete tumor destruction while sparing healthy tissue. This thesis examines a biokinetic model, validated with patient data, and a feasibility study on skin squamous cell carcinomas are discussed. The study reports 75% tumor complete response rate and 48% patients experiencing acute grade 2 toxicity, resolving within a month. An observed abscopal effect (AE), where tumor regression occurs at non-irradiated sites, is examined, highlighting DaRT's potential in triggering anti-tumor immune responses. This effect, coupled with DaRT's high-linear energy transfer (LET), suggests its superiority over low-LET radiation in certain clinical scenarios. Improvements to DaRT, including the use of an external radio-opaque template for treatment planning, are explored. This advancement aids in determining source numbers for optimal tumor coverage, enhancing DaRT’s safety. The thesis outlines a typical DaRT procedure, from tumor measurements to source assessment and administration, emphasizing the importance of precise seed positioning. Furthermore, the thesis discusses DaRT's potential in treating prostate cancer, a prevalent global health issue, by offering an alternative to traditional salvage therapies. DaRT seeds, delivering alpha particle-based interstitial radiation, require precision in seed insertion due to their limited tissue range. In conclusion, the thesis advocates for DaRT's role in treating solid tumors, emphasizing its improved radiobiological potency and potential benefits over beta and gamma source-based therapies. Ongoing studies are assessing DaRT's feasibility in treating various solid tumors, including pancreatic, breast, prostate, and vulvar malignancies, suggesting a promising future in cancer treatment.