5 resultados para Reflex Modification
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.
Resumo:
This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax®2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax®2533 was also chemically modified, obtaining the product called “Benzoyl-P2533”, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.
Resumo:
INTRODUCTION Endograft deployment is a well-known cause of arterial stiffness increase as well as arterial stiffness increase represent a recognized cardiovascular risk factor. A harmful effect on cardiac function induced by the endograft deployment should be investigated. Aim of this study was to evaluate the impact of endograft deployment on the arterial stiffness and cardiac geometry of patients treated for aortic aneurysm in order to detect modifications that could justify an increased cardiac mortality at follow-up. MATHERIALS AND METHODS Over a period of 3 years, patients undergoing elective EVAR for infrarenal aortic pathologies in two university centers in Emilia Romagna were examined. All patients underwent pre-operative and six-months post-operative Pulse Wave Velocity (PWV) examination using an ultrasound-based method performed by vascular surgeons together with trans-thoracic echocardiography examination in order to evaluate cardiac chambers geometry before and after the treatment. RESULTS 69 patients were enrolled. After 36 months, 36 patients (52%) completed the 6 months follow-up examination.The ultrasound-based carotid-femoral PWV measurements performed preoperatively and 6 months after the procedure revealed a significant postoperative increase of cf-PWV (11,6±3,6 m/sec vs 12,3±8 m/sec; p.value:0,037).Postoperative LVtdV (90±28,3 ml/m2 vs 99,1±29,7 ml/m2; p.value:0.031) LVtdVi (47,4±15,9 ml/m2 vs 51,9±14,9 ml/m2; p.value:0.050), IVStd (12±1,5 mm vs 12,1±1,3 mm; p.value:0,027) were significantly increased if compared with preoperative measures.Postoperative E/A (0,76±0,26 vs 0,6±0,67; p.value:0,011), E’ lateral (9,5±2,6 vs 7,9±2,6; p.value:0,024) and A’ septal (10,8±1,5 vs 8,9±2; p.value0,005) were significantly reduced if compared with preoperative measurements CONCLUSION The endovascular treatment of the abdominal aorta causes an immediate and significant increase of the aortic stiffness.This increase reflects negatively on patients’ cardiac geometry inducing left ventricle hypertrophy and mild diastolic disfunction after just 6 months from endograft’s implantation.Further investigations and long-term results are necessary to access if this negative remodeling could affect the cardiac outcome of patient treated using the endovascular approach.