13 resultados para Real Electricity Markets Data
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis is a collection of essays about the instrumental use of commitment decisions to facilitate the completion of the European internal electricity market. European policy can shape markets in many ways, two most evident being regulation and competition enforcement. The interplay between these two instruments attracts a lot of scholarly attention. One of the major concerns in the competition vs. regulation debate is the instrumental use of competition rules. It has been observed that competition enforcement is triggered not only as a response to an anticompetitive harm occurring in the market, but that it sometimes becomes a powerful tool in the European Commission’s hands to pursue regulatory goals. This thesis looks for examples of such instrumentalisation in the context of electricity markets and finds that the Commission is very pragmatic in using all the possible instruments it has at hand to push forward its project of creating the internal electricity market. This includes regulation, competition enforcement and all sorts of political pressure. To the extent that commitment decisions accelerate sector-specific regulation and overcome political deadlocks, they contribute to the Commission’s energy policy goals. However, instrumentalisation of competition rules comes at a certain cost to competition policy, energy policy and, most importantly, to electricity markets themselves. Markets might be negatively affected either indirectly, by application of sector-specific regulation or competition policy building on previous commitment decisions, or directly, through the implementation of inadequate commitments in individual cases. Concluding, commitment decisions generally contributed to achieving the policy objectives of the internal electricity market, but their use for that purpose does not come without cost. Given that this cost is ultimately borne by the internal electricity market, the Commission should take a more balanced approach to the instrumental use of commitment decisions so that it does not do more harm than good.
Towards the 3D attenuation imaging of active volcanoes: methods and tests on real and simulated data
Resumo:
The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks
Resumo:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
Resumo:
Il problema dell'antibiotico-resistenza è un problema di sanità pubblica per affrontare il quale è necessario un sistema di sorveglianza basato sulla raccolta e l'analisi dei dati epidemiologici di laboratorio. Il progetto di dottorato è consistito nello sviluppo di una applicazione web per la gestione di tali dati di antibiotico sensibilità di isolati clinici utilizzabile a livello di ospedale. Si è creata una piattaforma web associata a un database relazionale per avere un’applicazione dinamica che potesse essere aggiornata facilmente inserendo nuovi dati senza dover manualmente modificare le pagine HTML che compongono l’applicazione stessa. E’ stato utilizzato il database open-source MySQL in quanto presenta numerosi vantaggi: estremamente stabile, elevate prestazioni, supportato da una grande comunità online ed inoltre gratuito. Il contenuto dinamico dell’applicazione web deve essere generato da un linguaggio di programmazione tipo “scripting” che automatizzi operazioni di inserimento, modifica, cancellazione, visualizzazione di larghe quantità di dati. E’ stato scelto il PHP, linguaggio open-source sviluppato appositamente per la realizzazione di pagine web dinamiche, perfettamente utilizzabile con il database MySQL. E’ stata definita l’architettura del database creando le tabelle contenenti i dati e le relazioni tra di esse: le anagrafiche, i dati relativi ai campioni, microrganismi isolati e agli antibiogrammi con le categorie interpretative relative al dato antibiotico. Definite tabelle e relazioni del database è stato scritto il codice associato alle funzioni principali: inserimento manuale di antibiogrammi, importazione di antibiogrammi multipli provenienti da file esportati da strumenti automatizzati, modifica/eliminazione degli antibiogrammi precedenti inseriti nel sistema, analisi dei dati presenti nel database con tendenze e andamenti relativi alla prevalenza di specie microbiche e alla chemioresistenza degli stessi, corredate da grafici. Lo sviluppo ha incluso continui test delle funzioni via via implementate usando reali dati clinici e sono stati introdotti appositi controlli e l’introduzione di una semplice e pulita veste grafica.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.
Resumo:
This thesis is dedicated to the analysis of non-linear pricing in oligopoly. Non-linear pricing is a fairly predominant practice in most real markets, mostly characterized by some amount of competition. The sophistication of pricing practices has increased in the latest decades due to the technological advances that have allowed companies to gather more and more data on consumers preferences. The first essay of the thesis highlights the main characteristics of oligopolistic non-linear pricing. Non-linear pricing is a special case of price discrimination. The theory of price discrimination has to be modified in presence of oligopoly: in particular, a crucial role is played by the competitive externality that implies that product differentiation is closely related to the possibility of discriminating. The essay reviews the theory of competitive non-linear pricing by starting from its foundations, mechanism design under common agency. The different approaches to model non-linear pricing are then reviewed. In particular, the difference between price and quantity competition is highlighted. Finally, the close link between non-linear pricing and the recent developments in the theory of vertical differentiation is explored. The second essay shows how the effects of non-linear pricing are determined by the relationship between the demand and the technological structure of the market. The chapter focuses on a model in which firms supply a homogeneous product in two different sizes. Information about consumers' reservation prices is incomplete and the production technology is characterized by size economies. The model provides insights on the size of the products that one finds in the market. Four equilibrium regions are identified depending on the relative intensity of size economies with respect to consumers' evaluation of the good. Regions for which the product is supplied in a single unit or in several different sizes or in only a very large one. Both the private and social desirability of non-linear pricing varies across different equilibrium regions. The third essay considers the broadband internet market. Non discriminatory issues seem the core of the recent debate on the opportunity or not of regulating the internet. One of the main questions posed is whether the telecom companies, owning the networks constituting the internet, should be allowed to offer quality-contingent contracts to content providers. The aim of this essay is to analyze the issue through a stylized two-sided market model of the web that highlights the effects of such a discrimination over quality, prices and participation to the internet of providers and final users. An overall welfare comparison is proposed, concluding that the final effects of regulation crucially depend on both the technology and preferences of agents.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.
Resumo:
In digital markets personal information is pervasively collected by firms. In the first chapter I study data ownership and product customization when there is exclusive access to non rival but excludable data about consumer preferences. I show that an incumbent firm does not have an incentive to sell an exclusively held dataset with a rival firm, but instead it has an incentive to trade a customizing technology with the other firm. In the second chapter I investigate the effects of consumer information on the intensity of competition. In a two dimensional model of product differentiation, firms use information on preferences to practice price discrimination. I contrast a full privacy and a no privacy benchmark with a regime in which firms are able to target consumers only partially. When data is partially informative, firms are always better-off with price discrimination and an exclusive access to user data is not necessarily a competition policy concern. From a consumer protection perspective, the policy recommendation is that the regulator should promote either no privacy or full privacy. In the third chapter I introduce a data broker that observes either only one or both dimensions of consumer information and sells this data to competing firms for price discrimination purposes. When the seller exogenously holds a partially informative dataset, an exclusive allocation arises. Instead, when the dataset held is fully informative, the data broker trades information non exclusively but each competitor acquires consumer data on a different dimension. When data collection is made endogenous, non exclusivity is robust if collection costs are not too high. The competition policy suggestion is that exclusivity should not be banned per se, but it is data differentiation in equilibrium that rises market power in competitive markets. Upstream competition is sufficient to ensure that both firms get access to consumer information.
Resumo:
The aim of the thesis is to assess the impact of depression in people with type 2 diabetes. Using Healthcare Utilization Databases, I estimated in a large population-based cohort with type 2 diabetes the incidence of depression over 10 year-period, identified the demographic and clinical predictors of depression, and determined the extent to which depression is a risk factor for acute and long-term complications and mortality. In the context of COVID-19 pandemic, I evaluated whether the presence of a history of depression in type 2 diabetes increased the Emergency Department (ED) access rate for diabetes-related complications, and I investigated changes in the incidence of depression during the first year of the pandemic. Findings from the first study indicated that developing depression was associated with being a woman, being over 65 years, living in rural areas, having insulin as initial diabetes medication and having comorbid conditions; the study also confirmed that depression was associated with an increased risk for acute and long-term diabetes complications and all-cause mortality. The second observational study showed a higher rate of ED access for diabetes-related complications during the pandemic in people with type 2 diabetes and a history of depression than in those without a history of depression, similar to what was observed in a pre-pandemic period. As shown in the third population-based study, the incidence of depression decreased in 2020 compared to 2019, mainly during the first and the second waves of the COVID-19 pandemic, when people probably had difficulty reaching healthcare services. This new real-world evidence will help healthcare professionals identify timely patients at high risk of developing depression. Lastly, policymakers and physicians will benefit from new evidence of the effects of the COVID-19 pandemic on depression in people with type 2 diabetes to ensure a high level of care during crisis periods.