5 resultados para Random Number Generation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-Pérot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
The importance of networks, in their broad sense, is rapidly and massively growing in modern-day society thanks to unprecedented communication capabilities offered by technology. In this context, the radio spectrum will be a primary resource to be preserved and not wasted. Therefore, the need for intelligent and automatic systems for in-depth spectrum analysis and monitoring will pave the way for a new set of opportunities and potential challenges. This thesis proposes a novel framework for automatic spectrum patrolling and the extraction of wireless network analytics. It aims to enhance the physical layer security of next generation wireless networks through the extraction and the analysis of dedicated analytical features. The framework consists of a spectrum sensing phase, carried out by a patrol composed of numerous radio-frequency (RF) sensing devices, followed by the extraction of a set of wireless network analytics. The methodology developed is blind, allowing spectrum sensing and analytics extraction of a network whose key features (i.e., number of nodes, physical layer signals, medium access protocol (MAC) and routing protocols) are unknown. Because of the wireless medium, over-the-air signals captured by the sensors are mixed; therefore, blind source separation (BSS) and measurement association are used to estimate the number of sources and separate the traffic patterns. After the separation, we put together a set of methodologies for extracting useful features of the wireless network, i.e., its logical topology, the application-level traffic patterns generated by the nodes, and their position. The whole framework is validated on an ad-hoc wireless network accounting for MAC protocol, packet collisions, nodes mobility, the spatial density of sensors, and channel impairments, such as path-loss, shadowing, and noise. The numerical results obtained by extensive and exhaustive simulations show that the proposed framework is consistent and can achieve the required performance.
Resumo:
Multiple Myeloma (MM) is a hematologic cancer with heterogeneous and complex genomic landscape, where Copy Number Alterations (CNAs) play a key role in the disease's pathogenesis and prognosis. It is of biological and clinical interest to study the temporal occurrence of early alterations, as they play a disease "driver" function by deregulating key tumor pathways. This study presents an innovative bioinformatic tools suite created for harmonizing and tracing the origin of CNAs throughout the evolutionary history of MM. To this aim, large cohorts of newly-diagnosed MM (NDMM, N=1582) and Smoldering-MM (SMM, N=282) were aggregated. The tools developed in this study enable the harmonization of CNAs as obtained from different genomic platforms in such a way that a high statistical power can be obtained. By doing so, the high numerosity of those cohorts was harnessed for the identification of novel genes characterized as "driver" (NFKB2, NOTCH2, MAX, EVI5 and MYC-ME2-enhancer), and the generation of an innovative timing model, implemented with a statistical method to introduce confidence intervals in the CNAs-calls. By applying this model on both NDMM and SMM cohorts, it was possible to identify specific CNAs (1q(CKS1B)amp, 13q(RB1)del, 11q(CCND1)amp and 14q(MAX)del) and categorize them as "early"/ "driver" events. A high level of precision was guaranteed by the narrow confidence intervals in the timing estimates. These CNAs were proposed as critical MM alterations, which play a foundational role in the evolutionary history of both SMM and NDMM. Finally, a multivariate survival model was able to identify the independent genomic alterations with the greatest effect on patients’ survival, including RB1-del, CKS1B-amp, MYC-amp, NOTCH2-amp and TRAF3-del/mut. In conclusion, the alterations that were identified as both "early-drivers” and correlated with patients’ survival were proposed as biomarkers that, if included in wider survival models, could provide a better disease stratification and an improved prognosis definition.