5 resultados para Protection by p-cycles
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, is included within viruses transmitted through the soil from plasmodiophorid as Polymyxa betae. BNYVV is the causal agent of Rhizomania, which induces abnormal rootlet proliferation and is widespread in the sugar beet growing areas in Europe, Asia and America; for review see (Peltier et al., 2008). In this latter continent, Beet soil-borne mosaic virus (BSBMV) has been identified (Lee et al., 2001) and belongs to the benyvirus genus together with BNYVV, both vectored by P. betae. BSBMV is widely distributed only in the United States and it has not been reported yet in others countries. It was first identified in Texas as a sugar beet virus morphologically similar but serologically distinct to BNYVV. Subsequent sequence analysis of BSBMV RNAs evidenced similar genomic organization to that of BNYVV but sufficient molecular differences to distinct BSBMV and BNYVV in two different species (Rush et al., 2003). Benyviruses field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs -1 contains a single long ORF encoding polypeptide that shares amino acid homology with known viral RNA-dependent RNA polymerases (RdRp) and helicases. RNAs -2 contains six ORFs: capsid protein (CP), one readthrough protein, triple gene block proteins (TGB) that are required for cell-to-cell virus movement and the sixth 14 kDa ORF is a post-translation gene silencing suppressor. RNAs -3 is involved on disease symptoms and is essential for virus systemic movement. BSBMV RNA-3 can be trans-replicated, trans-encapsidated by the BNYVV helper strain (RNA-1 and -2) (Ratti et al., 2009). BNYVV RNA-4 encoded one 31 kDa protein and is essential for vector interactions and virus transmission by P. betae (Rahim et al., 2007). BNYVV RNA-5 encoded 26 kDa protein that improve virus infections and accumulation in the hosts. We are interest on BSBMV effect on Rhizomania studies using powerful tools as full-length infectious cDNA clones. B-type full-length infectious cDNA clones are available (Quillet et al., 1989) as well as A/P-type RNA-3, -4 and -5 from BNYVV (unpublished). A-type BNYVV full-length clones are also available, but RNA-1 cDNA clone still need to be modified. During the PhD program, we start production of BSBMV full-length cDNA clones and we investigate molecular interactions between plant and Benyviruses exploiting biological, epidemiological and molecular similarities/divergences between BSBMV and BNYVV. During my PhD researchrs we obtained full length infectious cDNA clones of BSBMV RNA-1 and -2 and we demonstrate that they transcripts are replicated and packaged in planta and able to substitute BNYVV RNA-1 or RNA-2 in a chimeric viral progeny (BSBMV RNA-1 + BNYVV RNA-2 or BNYVV RNA-1 + BSBMV RNA-2). During BSBMV full-length cDNA clones production, unexpected 1,730 nts long form of BSBMV RNA-4 has been detected from sugar beet roots grown on BSBMV infected soil. Sequence analysis of the new BSBMV RNA-4 form revealed high identity (~100%) with published version of BSBMV RNA-4 sequence (NC_003508) between nucleotides 1-608 and 1,138-1,730, however the new form shows 528 additionally nucleotides between positions 608-1,138 (FJ424610). Two putative ORFs has been identified, the first one (nucleotides 383 to 1,234), encode a protein with predicted mass of 32 kDa (p32) and the second one (nucleotides 885 to 1,244) express an expected product of 13 kDa (p13). As for BSBMV RNA-3 (Ratti et al., 2009), full-length BSBMV RNA-4 cDNA clone permitted to obtain infectious transcripts that BNYVV viral machinery (Stras12) is able to replicate and to encapsidate in planta. Moreover, we demonstrated that BSBMV RNA-4 can substitute BNYVV RNA-4 for an efficient transmission through the vector P. betae in Beta vulgaris plants, demonstrating a very high correlation between BNYVV and BSBMV. At the same time, using BNYVV helper strain, we studied BSBMV RNA-4’s protein expression in planta. We associated a local necrotic lesions phenotype to the p32 protein expression onto mechanically inoculated C. quinoa. Flag or GFP-tagged sequences of p32 and p13 have been expressed in viral context, using Rep3 replicons, based on BNYVV RNA-3. Western blot analyses of local lesions contents, using FLAG-specific antibody, revealed a high molecular weight protein, which suggest either a strong interaction of BSBMV RNA4’s protein with host protein(s) or post translational modifications. GFP-fusion sequences permitted the subcellular localization of BSBMV RNA4’s proteins. Moreover we demonstrated the absence of self-activation domains on p32 by yeast two hybrid system approaches. We also confirmed that p32 protein is essential for virus transmission by P. betae using BNYVV helper strain and BNYVV RNA-3 and we investigated its role by the use of different deleted forms of p32 protein. Serial mechanical inoculation of wild-type BSBMV on C. quinoa plants were performed every 7 days. Deleted form of BSBMV RNA-4 (1298 bp) appeared after 14 passages and its sequence analysis shows deletion of 433 nucleotides between positions 611 and 1044 of RNA-4 new form. We demonstrated that this deleted form can’t support transmission by P. betae using BNYVV helper strain and BNYVV RNA-3, moreover we confirmed our hypothesis that BSBMV RNA-4 described by Lee et al. (2001) is a deleted form. Interesting after 21 passages we identifed one chimeric form of BSBMV RNA-4 and BSBMV RNA-3 (1146 bp). Two putative ORFs has been identified on its sequence, the first one (nucleotides 383 to 562), encode a protein with predicted mass of 7 kDa (p7), corresponding to the N-terminal of p32 protein encoded by BSBMV RNA-4; the second one (nucleotides 562 to 789) express an expected product of 9 kDa (p9) corresponding to the C-terminal of p29 encoded by BSBMV RNA-3. Results obtained by our research in this topic opened new research lines that our laboratories will develop in a closely future. In particular BSBMV p32 and its mutated forms will be used to identify factors, as host or vector protein(s), involved in the virus transmission through P. betae. The new results could allow selection or production of sugar beet plants able to prevent virus transmission then able to reduce viral inoculum in the soil.
Resumo:
Resumo:
The Variscan basement of Northern Apennines (Northern Italy) is a polymetamorphic portion of continental crust. This thesis investigated the metamorphic history of this basement occurring in the Cerreto Pass, in the Pontremoli well, and in the Pisani Mountains. The study comprised fieldwork, petrography and microstructural analysis, determination of the bulk rock and mineral composition, thermodynamic modelling, conventional geothermobarometry, monazite chemical dating and Ar/Ar dating of muscovite. The reconstructed metamorphic evolution of the selected samples allowed to define a long-lasting metamorphic history straddling the Variscan and Alpine orogenesis. Some general petrological issues generally found in low- to medium-grade metapelites were also tackled: (i) With middle-grade micaschist it is possible to reconstruct a complete P-T-D path by combining microstructural analysis and thermodynamic modelling. Prekinematic white mica may preserve Mg-rich cores related to the pre-peak stage. Mn-poor garnet rim records the peak metamorphism. Na-rich mylonitic white mica, the XFe of chlorite and the late paragenesis may constrain the retrograde stage. (ii) Metapelites may contain coronitic microstructures of apatite + Th-silicate, allanite and epidote around unstable monazite grains. Chemistry and microstructure of Th-rich monazite relics surrounded by this coronitic microstructure may suggest that monazite mineral was inherited and underwent partial dissolution and fluid-aided replacement by REE-accessory minerals at 500-600°C and 5-7 kbar. (iii) Fish-shaped white mica is not always a (prekinematic) mica-fish. Observed at high-magnification BSE images it may consist of several white mica formed during a mylonitic stage. Hence, the asymmetric foliation boudin is a suitable microstructure to obtain geochronological information about the shearing stage. (iv) Thermodynamic modelling of a hematite-rich metasedimentary rock fails to reproduce the observed mineral compositions when the bulk Fe2O3 is neglected or determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P-XFe2O3 diagrams.
Resumo:
In this thesis is described the design and synthesis of potential agents for the treatment of the multifactorial Alzheimer’s disease (AD). Our multi-target approach was to consider cannabinoid system involved in AD, together with classic targets. In the first project, designed modifications were performed on lead molecule in order to increase potency and obtain balanced activities on fatty acid amide hydrolase and cholinesterases. A small library of compounds was synthesized and biological results showed increased inhibitory activity (nanomolar range) related to selected target. The second project was focused on the benzofuran framework, a privileged structure being a common moiety found in many biologically active natural products and therapeutics. Hybrid molecules were designed and synthesized, focusing on the inhibition of cholinesterases, Aβ aggregation, FAAH and on the interaction with CB receptors. Preliminary results showed that several compounds are potent CB ligands, in particular the high affinity for CB2 receptors, could open new opportunities to modulate neuroinflammation. The third and the fourth project were carried out at the IMS, Aberdeen, under the supervision of Prof. Matteo Zanda. The role of the cannabinoid system in the brain is still largely unexplored and the relationship between the CB1 receptors functional modification, density and distribution and the onset of a pathological state is not well understood. For this reasons, Rimonabant analogues suitable as radioligands were synthesized. The latter, through PET, could provide reliable measurements of density and distribution of CB1 receptors in the brain. In the fifth project, in collaboration with CHyM of York, the goal was to develop arginine analogues that are target specific due to their exclusively location into NOS enzymes and could work as MRI contrasting agents. Synthesized analogues could be suitable substrate for the transfer of polarization by p-H2 molecules through SABRE technique transforming MRI a more sensitive and faster technique.