6 resultados para Primary Total Hip Arthroplasty

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questo studio è stato quello di determinare se a lungo termine le concentrazioni sieriche di ioni nei pazienti con protesi di rivestimento d’anca metallo-metallo (MOM-HR, metal-on-metal hip resurfacing) fossero differenti da quelle valutate nei pazienti con protesi totale d’anca metallo-metallo e testa del diametro di 28 mm (MOM-THA, metal-on-metal total hip arthroplasty); inoltre è stato valutato se le concentrazioni ioniche fossero al di sopra dei valori di riferimento e se fosse possibile stabilire l’esistenza di una relazione tra sesso e concentrazioni di ioni con riferimento al tipo di impianto. Il gruppo MOM-HR era costituito da 25 pazienti mentre il gruppo MOM-THA era di 16 pazienti. Per poter ricavare i valori di riferimento sono stati reclutati 48 donatori sani. La misurazione delle concentrazioni degli ioni cobalto (Co), cromo (Cr), nickel (Ni) e molibdeno (Mo) è stata effettuata utilizzando la spettrofotometria ad assorbimento atomico su fornace di grafite. A parte il Ni, le concentrazioni di ioni nei pazienti con MOM-HR erano più elevate rispetto ai controlli. Il rilascio di ioni Cr e Co nei pazienti con MOM-HR è risultato superiore rispetto ai soggetti con MOM-THA. Da un’analisi basata sul sesso, è emerso che nelle femmine con MOM-HR i livelli di ioni Cr e Co sono risultati significativamente aumentati rispetto alle femmine con MOM-THA. Indipendentemente dal tipo di impianto, gli accoppiamenti metallo-metallo (MOM) producono concentrazioni di ioni metallici significativamente più alte a follow-up a lungo termine rispetto a quelle osservate nei soggetti sani. Un fattore che deve essere attentamente considerato nella scelta dell’impianto, e in particolar modo nei soggetti giovani, è il cospicuo rilascio di ioni Cr e Co nella popolazione femminile con MOM-HR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total ankle arthroplasty (TAA) is still not as satisfactory as total hip and total knee arthroplasty. For the TAA to be considered a valuable alternative to ankle arthrodesis, an effective range of ankle mobility must be recovered. The disappointing clinical results of the current generation of TAA are mostly related to poor understanding of the structures guiding ankle joint mobility. A new design (BOX Ankle) has been developed, uniquely able to restore physiologic ankle mobility and a natural relationship between the implanted components and the retained ligaments. For the first time the shapes of the tibial and talar components in the sagittal plane were designed to be compatible with the demonstrated ligament isometric rotation. This resulted in an unique motion at the replaced ankle where natural sliding as well as rolling motion occurs while at the same time full conformity is maintained between the three components throughout the flexion arc. According to prior research, the design features a spherical convex tibial component, a talar component with radius of curvature in the sagittal plane longer than that of the natural talus, and a fully conforming meniscal component. After computer-based modelling and preliminary observations in several trial implantation in specimens, 126 patients were implanted in the period July 2003 – December 2008. 75 patients with at least 6 months follow-up are here reported. Mean age was 62,6 years (range 22 – 80), mean follow-up 20,2 months. The AOFAS clinical score systems were used to assess patient outcome. Radiographs at maximal dorsiflexion and maximal plantar flexion confirmed the meniscalbearing component moves anteriorly during dorsiflexion and posteriorly during plantarflexion. Frontal and lateral radiographs in the patients, show good alignment of the components, and no signs of radiolucency or loosening. The mean AOFAS score was observed to go from 41 pre-op to 74,6 at 6 month follow-up, with further improvement at the following follow-up. These early results reveal satisfactory clinical scores, with good recovery of range of motion and reduction of pain. Radiographic assessment reveals good osteointegration. All these preliminary results confirm biomechanical studies and the validity of this novel ligamentcompatible prosthesis design. Surely it will be important to re-evaluate these patients later.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’accoppiamento articolare in ceramica è sempre più utilizzato in chirurgia protesica dell’anca per le sue eccellenti proprietà tribologiche. Tuttavia la fragilità della ceramica è causa di fallimenti meccanici. Abbiamo quindi condotto una serie di studi al fine di individuare un metodo efficace di diagnosi precoce del fallimento della ceramica. Abbiamo analizzato delle componenti ceramiche espiantate e abbiamo trovato un pattern di usura pre-frattura che faceva supporre una dispersione di particelle di ceramica nello spazio articolare. Per la diagnosi precoce abbiamo validato una metodica basata sulla microanalisi del liquido sinoviale. Per validare la metodica abbiamo eseguito un agoaspirato in 12 protesi ben funzionanti (bianchi) e confrontato i risultati di 39 protesi con segni di rottura con quelli di 7 senza segni di rottura. Per individuare i pazienti a rischio rottura i dati demografici di 26 pazienti con ceramica rotta sono stati confrontati con 49 controlli comparabili in termini demografici, tipo di ceramica e tipo di protesi. Infine è stata condotta una revisione sistematica della letteratura sulla diagnosi della rottura della ceramica. Nell’aspirato la presenza di almeno 11 particelle ceramiche di dimensioni inferiori a 3 micron o di una maggiore di 3 micron per ogni campo di osservazione sono segno di rottura della ceramica. La metodica con agoaspirato ha 100% di sensibilità e 88 % di specificità nel predire rotture della ceramica. Nel gruppo delle ceramiche rotte è stato trovato un maggior numero di malposizionamenti della protesi rispetto ai controlli (p=0,001). Il rumore in protesi con ceramica dovrebbe sollevare il sospetto di fallimento ed indurre ad eseguire una TC e un agoaspirato. Dal confronto con la letteratura la nostra metodica risulta essere la più efficace.